Spaces:
Running
Running
added the new chatbot
Browse files
app.py
CHANGED
@@ -1,63 +1,102 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
)
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
demo = gr.ChatInterface(
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
value=0.95,
|
55 |
-
step=0.05,
|
56 |
-
label="Top-p (nucleus sampling)",
|
57 |
-
),
|
58 |
],
|
59 |
)
|
60 |
|
61 |
-
|
62 |
if __name__ == "__main__":
|
63 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import os
|
3 |
+
from upstash_vector import Index
|
4 |
+
from openai import OpenAI
|
5 |
+
import dotenv
|
6 |
+
|
7 |
+
# Load environment variables
|
8 |
+
dotenv.load_dotenv()
|
9 |
+
|
10 |
+
# Services (keep the same as in your original code)
|
11 |
+
class ConfigService:
|
12 |
+
@staticmethod
|
13 |
+
def load_config():
|
14 |
+
return {
|
15 |
+
"OPENAI_API_KEY": os.getenv("OPENAI_API_KEY"),
|
16 |
+
"UPSTASH_VECTOR_REST_URL": os.getenv("UPSTASH_VECTOR_REST_URL"),
|
17 |
+
"UPSTASH_VECTOR_REST_TOKEN": os.getenv("UPSTASH_VECTOR_REST_TOKEN"),
|
18 |
+
}
|
19 |
+
|
20 |
+
class ClientService:
|
21 |
+
@staticmethod
|
22 |
+
def initialize_clients(config):
|
23 |
+
return {
|
24 |
+
"index": Index(url=config["UPSTASH_VECTOR_REST_URL"], token=config["UPSTASH_VECTOR_REST_TOKEN"]),
|
25 |
+
"openai": OpenAI(api_key=config["OPENAI_API_KEY"]),
|
26 |
+
}
|
27 |
+
|
28 |
+
class EmbeddingService:
|
29 |
+
@staticmethod
|
30 |
+
def get_embedding(content, client):
|
31 |
+
response = client.embeddings.create(
|
32 |
+
input=content,
|
33 |
+
model="text-embedding-3-large"
|
34 |
+
)
|
35 |
+
return response.data[0].embedding
|
36 |
+
|
37 |
+
class VectorSearchService:
|
38 |
+
@staticmethod
|
39 |
+
def search(index, vector, top_k=2):
|
40 |
+
return index.query(vector=vector, top_k=top_k, include_metadata=True)
|
41 |
+
|
42 |
+
class PromptService:
|
43 |
+
@staticmethod
|
44 |
+
def load_system_prompt(file_path):
|
45 |
+
with open(file_path, 'r') as file:
|
46 |
+
return file.read().strip()
|
47 |
+
|
48 |
+
@staticmethod
|
49 |
+
def create_chat_prompt(question, context):
|
50 |
+
return f"Question: {question}\n\nContext: {context}"
|
51 |
+
|
52 |
+
class ChatService:
|
53 |
+
def __init__(self, clients, system_prompt):
|
54 |
+
self.clients = clients
|
55 |
+
self.messages = [{"role": "system", "content": system_prompt}]
|
56 |
+
|
57 |
+
def ask_question(self, question):
|
58 |
+
question_embedding = EmbeddingService.get_embedding(question, self.clients["openai"])
|
59 |
+
search_results = VectorSearchService.search(self.clients["index"], question_embedding)
|
60 |
+
|
61 |
+
context = []
|
62 |
+
for r in search_results:
|
63 |
+
if r.score > 0.7:
|
64 |
+
context.append(r.metadata['content'])
|
65 |
+
|
66 |
+
context = "\n".join(context)
|
67 |
+
final_prompt = PromptService.create_chat_prompt(question, context)
|
68 |
+
self.messages.append({"role": "user", "content": final_prompt})
|
69 |
+
|
70 |
+
chat_completion = self.clients["openai"].chat.completions.create(
|
71 |
+
model="gpt-4o-mini",
|
72 |
+
messages=self.messages
|
73 |
+
)
|
74 |
+
response_text = chat_completion.choices[0].message.content
|
75 |
+
self.messages.append({"role": "assistant", "content": response_text})
|
76 |
+
return response_text
|
77 |
+
|
78 |
+
# Initialize services
|
79 |
+
config = ConfigService.load_config()
|
80 |
+
clients = ClientService.initialize_clients(config)
|
81 |
+
system_prompt = PromptService.load_system_prompt("prompts/sys.md")
|
82 |
+
chat_service = ChatService(clients, system_prompt)
|
83 |
+
|
84 |
+
# Gradio interface
|
85 |
+
def chatbot(message, history):
|
86 |
+
response = chat_service.ask_question(message)
|
87 |
+
return response
|
88 |
+
|
89 |
demo = gr.ChatInterface(
|
90 |
+
fn=chatbot,
|
91 |
+
title="Vector Database Cloud Chatbot",
|
92 |
+
description="Ask questions about Vector Database Cloud",
|
93 |
+
theme="default",
|
94 |
+
examples=[
|
95 |
+
"What is Vector Database Cloud?",
|
96 |
+
"How does one-click deployment work?",
|
97 |
+
"What vector databases are supported?",
|
|
|
|
|
|
|
|
|
98 |
],
|
99 |
)
|
100 |
|
|
|
101 |
if __name__ == "__main__":
|
102 |
demo.launch()
|