Spaces:
Running
on
Zero
Running
on
Zero
import imageio | |
import numpy as np | |
from typing import List | |
from io import BytesIO | |
from PIL import Image | |
import subprocess | |
from time import sleep | |
import os | |
import torch | |
import torch.distributed as dist | |
from torch.distributed.fsdp import ( | |
FullyShardedDataParallel as FSDP, | |
StateDictType, FullStateDictConfig, | |
) | |
from torch.distributed.checkpoint.state_dict import ( | |
StateDictOptions, | |
get_model_state_dict, | |
get_optimizer_state_dict, | |
set_optimizer_state_dict | |
) | |
_INTRA_NODE_PROCESS_GROUP, _INTER_NODE_PROCESS_GROUP = None, None | |
_LOCAL_RANK, _LOCAL_WORLD_SIZE = -1, -1 | |
def images_to_gif_bytes(images: List, duration: int = 1000) -> bytes: | |
with BytesIO() as output_buffer: | |
# Save the first image | |
images[0].save(output_buffer, | |
format='GIF', | |
save_all=True, | |
append_images=images[1:], | |
duration=duration, | |
loop=0) # 0 means the GIF will loop indefinitely | |
# Get the byte array from the buffer | |
gif_bytes = output_buffer.getvalue() | |
return gif_bytes | |
def save_as_gif(images: List, file_path: str, duration: int = 1000): | |
with open(file_path, "wb") as f: | |
f.write(images_to_gif_bytes(images, duration)) | |
def images_to_mp4_bytes(images: List[Image.Image], duration: float = 1000) -> bytes: | |
with BytesIO() as output_buffer: | |
with imageio.get_writer(output_buffer, format='mp4', fps=1 / (duration / 1000)) as writer: | |
for img in images: | |
writer.append_data(np.array(img)) | |
mp4_bytes = output_buffer.getvalue() | |
return mp4_bytes | |
def save_as_mp4(images: List[Image.Image], file_path: str, duration: float = 1000): | |
with open(file_path, "wb") as f: | |
f.write(images_to_mp4_bytes(images, duration)) | |
def get_local_rank() -> int: | |
return _LOCAL_RANK | |
def get_local_world_size() -> int: | |
return _LOCAL_WORLD_SIZE | |
def _setup_dist_env_from_slurm(args): | |
while not os.environ.get("MASTER_ADDR", ""): | |
try: | |
os.environ["MASTER_ADDR"] = subprocess.check_output( | |
"sinfo -Nh -n %s | head -n 1 | awk '{print $1}'" % | |
os.environ['SLURM_NODELIST'], | |
shell=True, | |
).decode().strip() | |
except: | |
pass | |
sleep(1) | |
os.environ["MASTER_PORT"] = str(int(args.master_port)+1) | |
os.environ["RANK"] = os.environ["SLURM_PROCID"] | |
os.environ["WORLD_SIZE"] = os.environ["SLURM_NPROCS"] | |
os.environ["LOCAL_RANK"] = os.environ["SLURM_LOCALID"] | |
os.environ["LOCAL_WORLD_SIZE"] = os.environ["SLURM_NTASKS_PER_NODE"] | |
def init_process_groups(args): | |
if any([ | |
x not in os.environ | |
for x in ["RANK", "WORLD_SIZE", "MASTER_PORT", "MASTER_ADDR"] | |
]): | |
_setup_dist_env_from_slurm(args) | |
dist.init_process_group("nccl") | |
torch.cuda.set_device(dist.get_rank() % torch.cuda.device_count()) | |
global _LOCAL_RANK, _LOCAL_WORLD_SIZE | |
_LOCAL_RANK = int(os.environ["LOCAL_RANK"]) | |
_LOCAL_WORLD_SIZE = int(os.environ["LOCAL_WORLD_SIZE"]) | |
global _INTRA_NODE_PROCESS_GROUP, _INTER_NODE_PROCESS_GROUP | |
local_ranks, local_world_sizes = [torch.empty( | |
[dist.get_world_size()], dtype=torch.long, device="cuda" | |
) for _ in (0, 1)] | |
dist.all_gather_into_tensor(local_ranks, torch.tensor(get_local_rank(), device="cuda")) | |
dist.all_gather_into_tensor(local_world_sizes, torch.tensor(get_local_world_size(), device="cuda")) | |
local_ranks, local_world_sizes = local_ranks.tolist(), local_world_sizes.tolist() | |
node_ranks = [[0]] | |
for i in range(1, dist.get_world_size()): | |
if len(node_ranks[-1]) == local_world_sizes[i - 1]: | |
node_ranks.append([]) | |
else: | |
assert local_world_sizes[i] == local_world_sizes[i - 1] | |
node_ranks[-1].append(i) | |
for ranks in node_ranks: | |
group = dist.new_group(ranks) | |
if dist.get_rank() in ranks: | |
assert _INTRA_NODE_PROCESS_GROUP is None | |
_INTRA_NODE_PROCESS_GROUP = group | |
assert _INTRA_NODE_PROCESS_GROUP is not None | |
if min(local_world_sizes) == max(local_world_sizes): | |
for i in range(get_local_world_size()): | |
group = dist.new_group(list(range(i, dist.get_world_size(), get_local_world_size()))) | |
if i == get_local_rank(): | |
assert _INTER_NODE_PROCESS_GROUP is None | |
_INTER_NODE_PROCESS_GROUP = group | |
assert _INTER_NODE_PROCESS_GROUP is not None | |
def get_intra_node_process_group(): | |
assert _INTRA_NODE_PROCESS_GROUP is not None, \ | |
"Intra-node process group is not initialized." | |
return _INTRA_NODE_PROCESS_GROUP | |
def get_inter_node_process_group(): | |
assert _INTRA_NODE_PROCESS_GROUP is not None, \ | |
"Intra- and inter-node process groups are not initialized." | |
return _INTER_NODE_PROCESS_GROUP | |
def save_model_fsdp_only(rank, model, output_folder, filename): | |
with FSDP.state_dict_type( | |
model, | |
StateDictType.FULL_STATE_DICT, | |
FullStateDictConfig(rank0_only=True, offload_to_cpu=True), | |
): | |
consolidated_model_state_dict = model.state_dict() | |
if rank == 0: | |
torch.save( | |
consolidated_model_state_dict, | |
os.path.join(output_folder, filename), | |
) | |
del consolidated_model_state_dict | |
dist.barrier() | |
def save_model(rank, model, output_folder, filename): | |
state_dict = get_model_state_dict( | |
model, | |
options=StateDictOptions( | |
full_state_dict=True, | |
cpu_offload=True, | |
), | |
) | |
if rank == 0: | |
torch.save(state_dict, os.path.join(output_folder, filename)) | |
del state_dict | |
dist.barrier() | |
def load_model(rank, model, output_folder, filename, strict=True, logger=None): | |
if rank == 0: | |
missing_keys, unexpected_keys = model.load_state_dict( | |
torch.load(os.path.join(output_folder, filename), map_location="cpu"), | |
strict=strict | |
) | |
if logger is not None: | |
logger.info("Model initialization result:") | |
logger.info(f" Missing keys: {missing_keys}") | |
logger.info(f" Unexpected keys: {unexpected_keys}") | |
dist.barrier() | |
def save_optimizer_fsdp_only(model, optimizer, output_folder, filename): | |
with FSDP.state_dict_type( | |
model, | |
StateDictType.LOCAL_STATE_DICT, | |
): | |
torch.save(optimizer.state_dict(), os.path.join(output_folder, filename)) | |
dist.barrier() | |
def load_optimizer_fsdp_only(optimizer, output_folder, filename): | |
optimizer.load_state_dict( | |
torch.load(os.path.join(output_folder, filename), map_location="cpu") | |
) | |
dist.barrier() | |
def save_optimizer(model, optimizer, output_folder, filename): | |
state_dict = get_optimizer_state_dict( | |
model, | |
optimizer, | |
options=StateDictOptions( | |
full_state_dict=False, | |
cpu_offload=True, | |
), | |
) | |
torch.save(state_dict, os.path.join(output_folder, filename)) | |
dist.barrier() | |
def load_optimizer(model, optimizer, output_folder, filename): | |
state_dict = torch.load(os.path.join(output_folder, filename), map_location="cpu") | |
set_optimizer_state_dict( | |
model, | |
optimizer, | |
optim_state_dict=state_dict, | |
options=StateDictOptions( | |
full_state_dict=False, | |
strict=True | |
), | |
) | |
dist.barrier() |