VatsalPatel18 commited on
Commit
dee1caa
·
verified ·
1 Parent(s): 561ca00

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -6
app.py CHANGED
@@ -2,7 +2,6 @@ import gradio as gr
2
  import torch
3
  from PIL import Image
4
  from pathlib import Path
5
-
6
  from main import load_and_preprocess_image, genomic_plip_predictions, classify_tiles
7
 
8
  def run_load_and_preprocess_image(image_path, clip_processor_path):
@@ -17,20 +16,18 @@ def run_classify_tiles(pred_data, model_path):
17
  output = classify_tiles(pred_data, model_path)
18
  return output
19
 
20
-
21
  example_files = list(Path("sample_tiles").glob("*.jpeg"))
22
 
23
  with gr.Blocks() as demo:
24
  gr.Markdown("## Cancer Risk Prediction from Tissue Slide")
25
 
26
  image_file = gr.Image(type="filepath", label="Upload Image File")
27
-
28
  clip_processor_path = gr.Textbox(label="CLIP Processor Path", value="./genomic_plip_model")
29
  genomic_plip_model_path = gr.Textbox(label="Genomic PLIP Model Path", value="./genomic_plip_model")
30
  classifier_model_path = gr.Textbox(label="Classifier Model Path", value="./models/classifier.pth")
31
 
32
- image_tensor_output = gr.Variable()
33
- pred_data_output = gr.Variable()
34
  result_output = gr.Textbox(label="Result")
35
 
36
  preprocess_button = gr.Button("Preprocess Image")
@@ -54,7 +51,6 @@ with gr.Blocks() as demo:
54
  predict_button.click(update_status, inputs=[predict_status, pred_data_output], outputs=predict_status)
55
  classify_button.click(update_status, inputs=[classify_status, result_output], outputs=classify_status)
56
 
57
-
58
  gr.Markdown("## Example Images")
59
  gr.Examples(example_files, inputs=image_file)
60
 
 
2
  import torch
3
  from PIL import Image
4
  from pathlib import Path
 
5
  from main import load_and_preprocess_image, genomic_plip_predictions, classify_tiles
6
 
7
  def run_load_and_preprocess_image(image_path, clip_processor_path):
 
16
  output = classify_tiles(pred_data, model_path)
17
  return output
18
 
 
19
  example_files = list(Path("sample_tiles").glob("*.jpeg"))
20
 
21
  with gr.Blocks() as demo:
22
  gr.Markdown("## Cancer Risk Prediction from Tissue Slide")
23
 
24
  image_file = gr.Image(type="filepath", label="Upload Image File")
 
25
  clip_processor_path = gr.Textbox(label="CLIP Processor Path", value="./genomic_plip_model")
26
  genomic_plip_model_path = gr.Textbox(label="Genomic PLIP Model Path", value="./genomic_plip_model")
27
  classifier_model_path = gr.Textbox(label="Classifier Model Path", value="./models/classifier.pth")
28
 
29
+ image_tensor_output = gr.State()
30
+ pred_data_output = gr.State()
31
  result_output = gr.Textbox(label="Result")
32
 
33
  preprocess_button = gr.Button("Preprocess Image")
 
51
  predict_button.click(update_status, inputs=[predict_status, pred_data_output], outputs=predict_status)
52
  classify_button.click(update_status, inputs=[classify_status, result_output], outputs=classify_status)
53
 
 
54
  gr.Markdown("## Example Images")
55
  gr.Examples(example_files, inputs=image_file)
56