VatsalPatel18
commited on
Update main.py
Browse files
main.py
CHANGED
@@ -8,14 +8,15 @@ def load_and_preprocess_image(image_path, clip_processor_path):
|
|
8 |
clip_processor = CLIPImageProcessor.from_pretrained(clip_processor_path)
|
9 |
image = Image.open(image_path).convert("RGB")
|
10 |
inputs = clip_processor(images=[image], return_tensors="pt")
|
11 |
-
image_tensor = inputs['pixel_values']
|
12 |
return image_tensor
|
13 |
|
14 |
def genomic_plip_predictions(image_tensor, model_path):
|
15 |
-
|
|
|
16 |
gmodel.eval()
|
17 |
with torch.no_grad():
|
18 |
-
pred_data = gmodel(image_tensor)
|
19 |
return pred_data
|
20 |
|
21 |
def classify_tiles(pred_data, model_path):
|
|
|
8 |
clip_processor = CLIPImageProcessor.from_pretrained(clip_processor_path)
|
9 |
image = Image.open(image_path).convert("RGB")
|
10 |
inputs = clip_processor(images=[image], return_tensors="pt")
|
11 |
+
image_tensor = inputs['pixel_values'].to('cuda' if torch.cuda.is_available() else 'cpu')
|
12 |
return image_tensor
|
13 |
|
14 |
def genomic_plip_predictions(image_tensor, model_path):
|
15 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
16 |
+
gmodel = GenomicPLIPModel.from_pretrained(model_path).to(device)
|
17 |
gmodel.eval()
|
18 |
with torch.no_grad():
|
19 |
+
pred_data = gmodel(image_tensor.to(device))
|
20 |
return pred_data
|
21 |
|
22 |
def classify_tiles(pred_data, model_path):
|