Spaces:
Build error
Build error
Atin Sakkeer Hussain
commited on
Commit
·
b5e6f78
1
Parent(s):
795ce43
Add Model
Browse files- util/.ipynb_checkpoints/misc-checkpoint.py +422 -0
- util/lr_sched.py +21 -0
- util/misc.py +422 -0
util/.ipynb_checkpoints/misc-checkpoint.py
ADDED
@@ -0,0 +1,422 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
# --------------------------------------------------------
|
7 |
+
# References:
|
8 |
+
# DeiT: https://github.com/facebookresearch/deit
|
9 |
+
# BEiT: https://github.com/microsoft/unilm/tree/master/beit
|
10 |
+
# --------------------------------------------------------
|
11 |
+
|
12 |
+
import builtins
|
13 |
+
import datetime
|
14 |
+
import os
|
15 |
+
import time
|
16 |
+
from collections import defaultdict, deque
|
17 |
+
from pathlib import Path
|
18 |
+
import urllib
|
19 |
+
from tqdm import tqdm
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.utils.data
|
23 |
+
import torch.distributed as dist
|
24 |
+
from torch import inf
|
25 |
+
|
26 |
+
|
27 |
+
class SmoothedValue(object):
|
28 |
+
"""Track a series of values and provide access to smoothed values over a
|
29 |
+
window or the global series average.
|
30 |
+
"""
|
31 |
+
|
32 |
+
def __init__(self, window_size=20, fmt=None):
|
33 |
+
if fmt is None:
|
34 |
+
fmt = "{median:.4f} ({global_avg:.4f})"
|
35 |
+
self.deque = deque(maxlen=window_size)
|
36 |
+
self.total = 0.0
|
37 |
+
self.count = 0
|
38 |
+
self.fmt = fmt
|
39 |
+
|
40 |
+
def update(self, value, n=1):
|
41 |
+
self.deque.append(value)
|
42 |
+
self.count += n
|
43 |
+
self.total += value * n
|
44 |
+
|
45 |
+
def synchronize_between_processes(self):
|
46 |
+
"""
|
47 |
+
Warning: does not synchronize the deque!
|
48 |
+
"""
|
49 |
+
if not is_dist_avail_and_initialized():
|
50 |
+
return
|
51 |
+
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
|
52 |
+
dist.barrier()
|
53 |
+
dist.all_reduce(t)
|
54 |
+
t = t.tolist()
|
55 |
+
self.count = int(t[0])
|
56 |
+
self.total = t[1]
|
57 |
+
|
58 |
+
@property
|
59 |
+
def median(self):
|
60 |
+
d = torch.tensor(list(self.deque))
|
61 |
+
return d.median().item()
|
62 |
+
|
63 |
+
@property
|
64 |
+
def avg(self):
|
65 |
+
d = torch.tensor(list(self.deque), dtype=torch.float32)
|
66 |
+
return d.mean().item()
|
67 |
+
|
68 |
+
@property
|
69 |
+
def global_avg(self):
|
70 |
+
return self.total / self.count
|
71 |
+
|
72 |
+
@property
|
73 |
+
def max(self):
|
74 |
+
return max(self.deque)
|
75 |
+
|
76 |
+
@property
|
77 |
+
def value(self):
|
78 |
+
return self.deque[-1]
|
79 |
+
|
80 |
+
def __str__(self):
|
81 |
+
return self.fmt.format(
|
82 |
+
median=self.median,
|
83 |
+
avg=self.avg,
|
84 |
+
global_avg=self.global_avg,
|
85 |
+
max=self.max,
|
86 |
+
value=self.value)
|
87 |
+
|
88 |
+
|
89 |
+
class MetricLogger(object):
|
90 |
+
def __init__(self, delimiter="\t"):
|
91 |
+
self.meters = defaultdict(SmoothedValue)
|
92 |
+
self.delimiter = delimiter
|
93 |
+
|
94 |
+
def update(self, **kwargs):
|
95 |
+
for k, v in kwargs.items():
|
96 |
+
if v is None:
|
97 |
+
continue
|
98 |
+
if isinstance(v, torch.Tensor):
|
99 |
+
v = v.item()
|
100 |
+
assert isinstance(v, (float, int))
|
101 |
+
self.meters[k].update(v)
|
102 |
+
|
103 |
+
def __getattr__(self, attr):
|
104 |
+
if attr in self.meters:
|
105 |
+
return self.meters[attr]
|
106 |
+
if attr in self.__dict__:
|
107 |
+
return self.__dict__[attr]
|
108 |
+
raise AttributeError("'{}' object has no attribute '{}'".format(
|
109 |
+
type(self).__name__, attr))
|
110 |
+
|
111 |
+
def __str__(self):
|
112 |
+
loss_str = []
|
113 |
+
for name, meter in self.meters.items():
|
114 |
+
loss_str.append(
|
115 |
+
"{}: {}".format(name, str(meter))
|
116 |
+
)
|
117 |
+
return self.delimiter.join(loss_str)
|
118 |
+
|
119 |
+
def synchronize_between_processes(self):
|
120 |
+
for meter in self.meters.values():
|
121 |
+
meter.synchronize_between_processes()
|
122 |
+
|
123 |
+
def add_meter(self, name, meter):
|
124 |
+
self.meters[name] = meter
|
125 |
+
|
126 |
+
def log_every(self, iterable, print_freq, header=None):
|
127 |
+
i = 0
|
128 |
+
if not header:
|
129 |
+
header = ''
|
130 |
+
start_time = time.time()
|
131 |
+
end = time.time()
|
132 |
+
iter_time = SmoothedValue(fmt='{avg:.4f}')
|
133 |
+
data_time = SmoothedValue(fmt='{avg:.4f}')
|
134 |
+
space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
|
135 |
+
log_msg = [
|
136 |
+
header,
|
137 |
+
'[{0' + space_fmt + '}/{1}]',
|
138 |
+
'eta: {eta}',
|
139 |
+
'{meters}',
|
140 |
+
'time: {time}',
|
141 |
+
'data: {data}'
|
142 |
+
]
|
143 |
+
if torch.cuda.is_available():
|
144 |
+
log_msg.append('max mem: {memory:.0f}')
|
145 |
+
log_msg = self.delimiter.join(log_msg)
|
146 |
+
MB = 1024.0 * 1024.0
|
147 |
+
for obj in iterable:
|
148 |
+
data_time.update(time.time() - end)
|
149 |
+
yield obj
|
150 |
+
iter_time.update(time.time() - end)
|
151 |
+
if i % print_freq == 0 or i == len(iterable) - 1:
|
152 |
+
eta_seconds = iter_time.global_avg * (len(iterable) - i)
|
153 |
+
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
|
154 |
+
if torch.cuda.is_available():
|
155 |
+
print(log_msg.format(
|
156 |
+
i, len(iterable), eta=eta_string,
|
157 |
+
meters=str(self),
|
158 |
+
time=str(iter_time), data=str(data_time),
|
159 |
+
memory=torch.cuda.max_memory_allocated() / MB))
|
160 |
+
else:
|
161 |
+
print(log_msg.format(
|
162 |
+
i, len(iterable), eta=eta_string,
|
163 |
+
meters=str(self),
|
164 |
+
time=str(iter_time), data=str(data_time)))
|
165 |
+
i += 1
|
166 |
+
end = time.time()
|
167 |
+
total_time = time.time() - start_time
|
168 |
+
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
|
169 |
+
print('{} Total time: {} ({:.4f} s / it)'.format(
|
170 |
+
header, total_time_str, total_time / len(iterable)))
|
171 |
+
|
172 |
+
|
173 |
+
def setup_for_distributed(is_master):
|
174 |
+
"""
|
175 |
+
This function disables printing when not in master process
|
176 |
+
"""
|
177 |
+
builtin_print = builtins.print
|
178 |
+
|
179 |
+
def print(*args, **kwargs):
|
180 |
+
force = kwargs.pop('force', False)
|
181 |
+
force = force or (get_world_size() > 8)
|
182 |
+
if is_master or force:
|
183 |
+
now = datetime.datetime.now().time()
|
184 |
+
builtin_print('[{}] '.format(now), end='') # print with time stamp
|
185 |
+
builtin_print(*args, **kwargs)
|
186 |
+
|
187 |
+
builtins.print = print
|
188 |
+
|
189 |
+
|
190 |
+
def is_dist_avail_and_initialized():
|
191 |
+
if not dist.is_available():
|
192 |
+
return False
|
193 |
+
if not dist.is_initialized():
|
194 |
+
return False
|
195 |
+
return True
|
196 |
+
|
197 |
+
|
198 |
+
def get_world_size():
|
199 |
+
if not is_dist_avail_and_initialized():
|
200 |
+
return 1
|
201 |
+
return dist.get_world_size()
|
202 |
+
|
203 |
+
|
204 |
+
def get_rank():
|
205 |
+
if not is_dist_avail_and_initialized():
|
206 |
+
return 0
|
207 |
+
return dist.get_rank()
|
208 |
+
|
209 |
+
|
210 |
+
def is_main_process():
|
211 |
+
return get_rank() == 0
|
212 |
+
|
213 |
+
|
214 |
+
def save_on_master(*args, **kwargs):
|
215 |
+
if is_main_process():
|
216 |
+
torch.save(*args, **kwargs)
|
217 |
+
|
218 |
+
|
219 |
+
def init_distributed_mode(args):
|
220 |
+
if args.dist_on_itp:
|
221 |
+
args.rank = int(os.environ['OMPI_COMM_WORLD_RANK'])
|
222 |
+
args.world_size = int(os.environ['OMPI_COMM_WORLD_SIZE'])
|
223 |
+
args.gpu = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK'])
|
224 |
+
args.dist_url = "tcp://%s:%s" % (os.environ['MASTER_ADDR'], os.environ['MASTER_PORT'])
|
225 |
+
os.environ['LOCAL_RANK'] = str(args.gpu)
|
226 |
+
os.environ['RANK'] = str(args.rank)
|
227 |
+
os.environ['WORLD_SIZE'] = str(args.world_size)
|
228 |
+
# ["RANK", "WORLD_SIZE", "MASTER_ADDR", "MASTER_PORT", "LOCAL_RANK"]
|
229 |
+
elif 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
|
230 |
+
args.rank = int(os.environ["RANK"])
|
231 |
+
args.world_size = int(os.environ['WORLD_SIZE'])
|
232 |
+
args.gpu = int(os.environ['LOCAL_RANK'])
|
233 |
+
elif 'SLURM_PROCID' in os.environ:
|
234 |
+
args.rank = int(os.environ['SLURM_PROCID'])
|
235 |
+
args.gpu = args.rank % torch.cuda.device_count()
|
236 |
+
else:
|
237 |
+
print('Not using distributed mode')
|
238 |
+
setup_for_distributed(is_master=True) # hack
|
239 |
+
args.distributed = False
|
240 |
+
return
|
241 |
+
|
242 |
+
args.distributed = True
|
243 |
+
|
244 |
+
print("GPU::", args.gpu)
|
245 |
+
torch.cuda.set_device(args.gpu)
|
246 |
+
args.dist_backend = 'nccl'
|
247 |
+
print('| distributed init (rank {}): {}, gpu {}'.format(
|
248 |
+
args.rank, args.dist_url, args.gpu), flush=True)
|
249 |
+
torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
|
250 |
+
world_size=args.world_size, rank=args.rank)
|
251 |
+
torch.distributed.barrier()
|
252 |
+
setup_for_distributed(args.rank == 0)
|
253 |
+
|
254 |
+
|
255 |
+
class NativeScalerWithGradNormCount:
|
256 |
+
state_dict_key = "amp_scaler"
|
257 |
+
|
258 |
+
def __init__(self):
|
259 |
+
self._scaler = torch.cuda.amp.GradScaler()
|
260 |
+
|
261 |
+
def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True):
|
262 |
+
self._scaler.scale(loss).backward(create_graph=create_graph)
|
263 |
+
if update_grad:
|
264 |
+
if clip_grad is not None:
|
265 |
+
assert parameters is not None
|
266 |
+
self._scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place
|
267 |
+
norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad)
|
268 |
+
else:
|
269 |
+
self._scaler.unscale_(optimizer)
|
270 |
+
norm = get_grad_norm_(parameters)
|
271 |
+
self._scaler.step(optimizer)
|
272 |
+
self._scaler.update()
|
273 |
+
else:
|
274 |
+
norm = None
|
275 |
+
return norm
|
276 |
+
|
277 |
+
def state_dict(self):
|
278 |
+
return self._scaler.state_dict()
|
279 |
+
|
280 |
+
def load_state_dict(self, state_dict):
|
281 |
+
self._scaler.load_state_dict(state_dict)
|
282 |
+
|
283 |
+
|
284 |
+
def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor:
|
285 |
+
if isinstance(parameters, torch.Tensor):
|
286 |
+
parameters = [parameters]
|
287 |
+
parameters = [p for p in parameters if p.grad is not None]
|
288 |
+
norm_type = float(norm_type)
|
289 |
+
if len(parameters) == 0:
|
290 |
+
return torch.tensor(0.)
|
291 |
+
device = parameters[0].grad.device
|
292 |
+
if norm_type == inf:
|
293 |
+
total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters)
|
294 |
+
else:
|
295 |
+
total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type)
|
296 |
+
return total_norm
|
297 |
+
|
298 |
+
|
299 |
+
def save_model(args, epoch, model, model_without_ddp, optimizer, loss_scaler):
|
300 |
+
output_dir = Path(args.output_dir)
|
301 |
+
epoch_name = str(epoch)
|
302 |
+
if loss_scaler is not None:
|
303 |
+
checkpoint_paths = [output_dir / ('checkpoint.pth')]
|
304 |
+
for checkpoint_path in checkpoint_paths:
|
305 |
+
to_save = {
|
306 |
+
'model': model_without_ddp.state_dict(),
|
307 |
+
'optimizer': optimizer.state_dict(),
|
308 |
+
'epoch': epoch,
|
309 |
+
'scaler': loss_scaler.state_dict(),
|
310 |
+
'args': args,
|
311 |
+
}
|
312 |
+
|
313 |
+
save_on_master(to_save, checkpoint_path)
|
314 |
+
else:
|
315 |
+
client_state = {'epoch': epoch}
|
316 |
+
model.save_checkpoint(save_dir=args.output_dir, tag="checkpoint", client_state=client_state)
|
317 |
+
|
318 |
+
|
319 |
+
def load_model(model_without_ddp, optimizer, loss_scaler, path):
|
320 |
+
if path.startswith('https'):
|
321 |
+
checkpoint = torch.hub.load_state_dict_from_url(
|
322 |
+
path, map_location='cpu', check_hash=True)
|
323 |
+
else:
|
324 |
+
checkpoint = torch.load(path, map_location='cpu')
|
325 |
+
new_checkpoint = {}
|
326 |
+
if optimizer is not None:
|
327 |
+
optimizer.load_state_dict(checkpoint['optimizer'])
|
328 |
+
if loss_scaler is not None:
|
329 |
+
loss_scaler.load_state_dict(checkpoint['scaler'])
|
330 |
+
print(checkpoint.keys())
|
331 |
+
new_ckpt = {}
|
332 |
+
for key, value in checkpoint['model'].items():
|
333 |
+
key = key.replace("module.", "")
|
334 |
+
new_ckpt[key] = value
|
335 |
+
|
336 |
+
load_result = model_without_ddp.load_state_dict(new_ckpt, strict=True)
|
337 |
+
assert len(load_result.unexpected_keys) == 0, f"Unexpected keys: {load_result.unexpected_keys}"
|
338 |
+
print("Load checkpoint %s" % path)
|
339 |
+
return checkpoint['epoch']
|
340 |
+
|
341 |
+
|
342 |
+
def all_reduce_mean(x):
|
343 |
+
world_size = get_world_size()
|
344 |
+
if world_size > 1:
|
345 |
+
x_reduce = torch.tensor(x).cuda()
|
346 |
+
dist.all_reduce(x_reduce)
|
347 |
+
x_reduce /= world_size
|
348 |
+
return x_reduce.item()
|
349 |
+
else:
|
350 |
+
return x
|
351 |
+
|
352 |
+
|
353 |
+
def add_weight_decay(model, weight_decay=1e-5, skip_list=()):
|
354 |
+
decay = []
|
355 |
+
no_decay = []
|
356 |
+
for name, param in model.named_parameters():
|
357 |
+
if not param.requires_grad:
|
358 |
+
continue # frozen weights
|
359 |
+
if len(param.shape) == 1 or name.endswith(".bias") or name in skip_list:
|
360 |
+
no_decay.append(param)
|
361 |
+
else:
|
362 |
+
decay.append(param)
|
363 |
+
return [
|
364 |
+
{'params': no_decay, 'weight_decay': 0.},
|
365 |
+
{'params': decay, 'weight_decay': weight_decay}]
|
366 |
+
|
367 |
+
|
368 |
+
class DistributedSubEpochSampler(torch.utils.data.Sampler):
|
369 |
+
|
370 |
+
def __init__(self, dataset, num_replicas, rank, shuffle, split_epoch=1, seed=42):
|
371 |
+
self.dataset = dataset
|
372 |
+
self.num_replicas = num_replicas
|
373 |
+
self.rank = rank
|
374 |
+
self.shuffle = shuffle
|
375 |
+
self.split_epoch = split_epoch
|
376 |
+
self.seed = seed
|
377 |
+
|
378 |
+
self.num_samples = len(dataset) // (num_replicas * split_epoch)
|
379 |
+
|
380 |
+
def __len__(self):
|
381 |
+
return self.num_samples
|
382 |
+
|
383 |
+
def __iter__(self):
|
384 |
+
if self.shuffle:
|
385 |
+
# deterministically shuffle based on epoch and seed
|
386 |
+
g = torch.Generator()
|
387 |
+
g.manual_seed(self.seed + self.epoch // self.split_epoch)
|
388 |
+
indices = torch.randperm(len(self.dataset), generator=g).tolist() # type: ignore[arg-type]
|
389 |
+
else:
|
390 |
+
indices = list(range(len(self.dataset))) # type: ignore[arg-type]
|
391 |
+
|
392 |
+
indices = indices[self.rank * self.split_epoch + self.epoch % self.split_epoch::self.num_replicas * self.split_epoch]
|
393 |
+
assert len(indices) >= self.num_samples
|
394 |
+
indices = indices[:self.num_samples]
|
395 |
+
|
396 |
+
return iter(indices)
|
397 |
+
|
398 |
+
def set_epoch(self, epoch):
|
399 |
+
self.epoch = epoch
|
400 |
+
|
401 |
+
def download(url: str, root: str):
|
402 |
+
os.makedirs(root, exist_ok=True)
|
403 |
+
filename = os.path.basename(url)
|
404 |
+
download_target = os.path.join(root, filename)
|
405 |
+
|
406 |
+
if os.path.exists(download_target) and not os.path.isfile(download_target):
|
407 |
+
raise RuntimeError(f"{download_target} exists and is not a regular file")
|
408 |
+
|
409 |
+
if os.path.isfile(download_target):
|
410 |
+
return download_target
|
411 |
+
|
412 |
+
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
|
413 |
+
with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True, unit_divisor=1024) as loop:
|
414 |
+
while True:
|
415 |
+
buffer = source.read(8192)
|
416 |
+
if not buffer:
|
417 |
+
break
|
418 |
+
output.write(buffer)
|
419 |
+
loop.update(len(buffer))
|
420 |
+
|
421 |
+
|
422 |
+
return download_target
|
util/lr_sched.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import math
|
8 |
+
|
9 |
+
def adjust_learning_rate(optimizer, epoch, args):
|
10 |
+
"""Decay the learning rate with half-cycle cosine after warmup"""
|
11 |
+
if epoch < args.warmup_epochs:
|
12 |
+
lr = args.lr * epoch / args.warmup_epochs
|
13 |
+
else:
|
14 |
+
lr = args.min_lr + (args.lr - args.min_lr) * 0.5 * \
|
15 |
+
(1. + math.cos(math.pi * (epoch - args.warmup_epochs) / (args.epochs - args.warmup_epochs)))
|
16 |
+
for param_group in optimizer.param_groups:
|
17 |
+
if "lr_scale" in param_group:
|
18 |
+
param_group["lr"] = lr * param_group["lr_scale"]
|
19 |
+
else:
|
20 |
+
param_group["lr"] = lr
|
21 |
+
return lr
|
util/misc.py
ADDED
@@ -0,0 +1,422 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
2 |
+
# All rights reserved.
|
3 |
+
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
# --------------------------------------------------------
|
7 |
+
# References:
|
8 |
+
# DeiT: https://github.com/facebookresearch/deit
|
9 |
+
# BEiT: https://github.com/microsoft/unilm/tree/master/beit
|
10 |
+
# --------------------------------------------------------
|
11 |
+
|
12 |
+
import builtins
|
13 |
+
import datetime
|
14 |
+
import os
|
15 |
+
import time
|
16 |
+
from collections import defaultdict, deque
|
17 |
+
from pathlib import Path
|
18 |
+
import urllib
|
19 |
+
from tqdm import tqdm
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.utils.data
|
23 |
+
import torch.distributed as dist
|
24 |
+
from torch import inf
|
25 |
+
|
26 |
+
|
27 |
+
class SmoothedValue(object):
|
28 |
+
"""Track a series of values and provide access to smoothed values over a
|
29 |
+
window or the global series average.
|
30 |
+
"""
|
31 |
+
|
32 |
+
def __init__(self, window_size=20, fmt=None):
|
33 |
+
if fmt is None:
|
34 |
+
fmt = "{median:.4f} ({global_avg:.4f})"
|
35 |
+
self.deque = deque(maxlen=window_size)
|
36 |
+
self.total = 0.0
|
37 |
+
self.count = 0
|
38 |
+
self.fmt = fmt
|
39 |
+
|
40 |
+
def update(self, value, n=1):
|
41 |
+
self.deque.append(value)
|
42 |
+
self.count += n
|
43 |
+
self.total += value * n
|
44 |
+
|
45 |
+
def synchronize_between_processes(self):
|
46 |
+
"""
|
47 |
+
Warning: does not synchronize the deque!
|
48 |
+
"""
|
49 |
+
if not is_dist_avail_and_initialized():
|
50 |
+
return
|
51 |
+
t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
|
52 |
+
dist.barrier()
|
53 |
+
dist.all_reduce(t)
|
54 |
+
t = t.tolist()
|
55 |
+
self.count = int(t[0])
|
56 |
+
self.total = t[1]
|
57 |
+
|
58 |
+
@property
|
59 |
+
def median(self):
|
60 |
+
d = torch.tensor(list(self.deque))
|
61 |
+
return d.median().item()
|
62 |
+
|
63 |
+
@property
|
64 |
+
def avg(self):
|
65 |
+
d = torch.tensor(list(self.deque), dtype=torch.float32)
|
66 |
+
return d.mean().item()
|
67 |
+
|
68 |
+
@property
|
69 |
+
def global_avg(self):
|
70 |
+
return self.total / self.count
|
71 |
+
|
72 |
+
@property
|
73 |
+
def max(self):
|
74 |
+
return max(self.deque)
|
75 |
+
|
76 |
+
@property
|
77 |
+
def value(self):
|
78 |
+
return self.deque[-1]
|
79 |
+
|
80 |
+
def __str__(self):
|
81 |
+
return self.fmt.format(
|
82 |
+
median=self.median,
|
83 |
+
avg=self.avg,
|
84 |
+
global_avg=self.global_avg,
|
85 |
+
max=self.max,
|
86 |
+
value=self.value)
|
87 |
+
|
88 |
+
|
89 |
+
class MetricLogger(object):
|
90 |
+
def __init__(self, delimiter="\t"):
|
91 |
+
self.meters = defaultdict(SmoothedValue)
|
92 |
+
self.delimiter = delimiter
|
93 |
+
|
94 |
+
def update(self, **kwargs):
|
95 |
+
for k, v in kwargs.items():
|
96 |
+
if v is None:
|
97 |
+
continue
|
98 |
+
if isinstance(v, torch.Tensor):
|
99 |
+
v = v.item()
|
100 |
+
assert isinstance(v, (float, int))
|
101 |
+
self.meters[k].update(v)
|
102 |
+
|
103 |
+
def __getattr__(self, attr):
|
104 |
+
if attr in self.meters:
|
105 |
+
return self.meters[attr]
|
106 |
+
if attr in self.__dict__:
|
107 |
+
return self.__dict__[attr]
|
108 |
+
raise AttributeError("'{}' object has no attribute '{}'".format(
|
109 |
+
type(self).__name__, attr))
|
110 |
+
|
111 |
+
def __str__(self):
|
112 |
+
loss_str = []
|
113 |
+
for name, meter in self.meters.items():
|
114 |
+
loss_str.append(
|
115 |
+
"{}: {}".format(name, str(meter))
|
116 |
+
)
|
117 |
+
return self.delimiter.join(loss_str)
|
118 |
+
|
119 |
+
def synchronize_between_processes(self):
|
120 |
+
for meter in self.meters.values():
|
121 |
+
meter.synchronize_between_processes()
|
122 |
+
|
123 |
+
def add_meter(self, name, meter):
|
124 |
+
self.meters[name] = meter
|
125 |
+
|
126 |
+
def log_every(self, iterable, print_freq, header=None):
|
127 |
+
i = 0
|
128 |
+
if not header:
|
129 |
+
header = ''
|
130 |
+
start_time = time.time()
|
131 |
+
end = time.time()
|
132 |
+
iter_time = SmoothedValue(fmt='{avg:.4f}')
|
133 |
+
data_time = SmoothedValue(fmt='{avg:.4f}')
|
134 |
+
space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
|
135 |
+
log_msg = [
|
136 |
+
header,
|
137 |
+
'[{0' + space_fmt + '}/{1}]',
|
138 |
+
'eta: {eta}',
|
139 |
+
'{meters}',
|
140 |
+
'time: {time}',
|
141 |
+
'data: {data}'
|
142 |
+
]
|
143 |
+
if torch.cuda.is_available():
|
144 |
+
log_msg.append('max mem: {memory:.0f}')
|
145 |
+
log_msg = self.delimiter.join(log_msg)
|
146 |
+
MB = 1024.0 * 1024.0
|
147 |
+
for obj in iterable:
|
148 |
+
data_time.update(time.time() - end)
|
149 |
+
yield obj
|
150 |
+
iter_time.update(time.time() - end)
|
151 |
+
if i % print_freq == 0 or i == len(iterable) - 1:
|
152 |
+
eta_seconds = iter_time.global_avg * (len(iterable) - i)
|
153 |
+
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
|
154 |
+
if torch.cuda.is_available():
|
155 |
+
print(log_msg.format(
|
156 |
+
i, len(iterable), eta=eta_string,
|
157 |
+
meters=str(self),
|
158 |
+
time=str(iter_time), data=str(data_time),
|
159 |
+
memory=torch.cuda.max_memory_allocated() / MB))
|
160 |
+
else:
|
161 |
+
print(log_msg.format(
|
162 |
+
i, len(iterable), eta=eta_string,
|
163 |
+
meters=str(self),
|
164 |
+
time=str(iter_time), data=str(data_time)))
|
165 |
+
i += 1
|
166 |
+
end = time.time()
|
167 |
+
total_time = time.time() - start_time
|
168 |
+
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
|
169 |
+
print('{} Total time: {} ({:.4f} s / it)'.format(
|
170 |
+
header, total_time_str, total_time / len(iterable)))
|
171 |
+
|
172 |
+
|
173 |
+
def setup_for_distributed(is_master):
|
174 |
+
"""
|
175 |
+
This function disables printing when not in master process
|
176 |
+
"""
|
177 |
+
builtin_print = builtins.print
|
178 |
+
|
179 |
+
def print(*args, **kwargs):
|
180 |
+
force = kwargs.pop('force', False)
|
181 |
+
force = force or (get_world_size() > 8)
|
182 |
+
if is_master or force:
|
183 |
+
now = datetime.datetime.now().time()
|
184 |
+
builtin_print('[{}] '.format(now), end='') # print with time stamp
|
185 |
+
builtin_print(*args, **kwargs)
|
186 |
+
|
187 |
+
builtins.print = print
|
188 |
+
|
189 |
+
|
190 |
+
def is_dist_avail_and_initialized():
|
191 |
+
if not dist.is_available():
|
192 |
+
return False
|
193 |
+
if not dist.is_initialized():
|
194 |
+
return False
|
195 |
+
return True
|
196 |
+
|
197 |
+
|
198 |
+
def get_world_size():
|
199 |
+
if not is_dist_avail_and_initialized():
|
200 |
+
return 1
|
201 |
+
return dist.get_world_size()
|
202 |
+
|
203 |
+
|
204 |
+
def get_rank():
|
205 |
+
if not is_dist_avail_and_initialized():
|
206 |
+
return 0
|
207 |
+
return dist.get_rank()
|
208 |
+
|
209 |
+
|
210 |
+
def is_main_process():
|
211 |
+
return get_rank() == 0
|
212 |
+
|
213 |
+
|
214 |
+
def save_on_master(*args, **kwargs):
|
215 |
+
if is_main_process():
|
216 |
+
torch.save(*args, **kwargs)
|
217 |
+
|
218 |
+
|
219 |
+
def init_distributed_mode(args):
|
220 |
+
if args.dist_on_itp:
|
221 |
+
args.rank = int(os.environ['OMPI_COMM_WORLD_RANK'])
|
222 |
+
args.world_size = int(os.environ['OMPI_COMM_WORLD_SIZE'])
|
223 |
+
args.gpu = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK'])
|
224 |
+
args.dist_url = "tcp://%s:%s" % (os.environ['MASTER_ADDR'], os.environ['MASTER_PORT'])
|
225 |
+
os.environ['LOCAL_RANK'] = str(args.gpu)
|
226 |
+
os.environ['RANK'] = str(args.rank)
|
227 |
+
os.environ['WORLD_SIZE'] = str(args.world_size)
|
228 |
+
# ["RANK", "WORLD_SIZE", "MASTER_ADDR", "MASTER_PORT", "LOCAL_RANK"]
|
229 |
+
elif 'RANK' in os.environ and 'WORLD_SIZE' in os.environ:
|
230 |
+
args.rank = int(os.environ["RANK"])
|
231 |
+
args.world_size = int(os.environ['WORLD_SIZE'])
|
232 |
+
args.gpu = int(os.environ['LOCAL_RANK'])
|
233 |
+
elif 'SLURM_PROCID' in os.environ:
|
234 |
+
args.rank = int(os.environ['SLURM_PROCID'])
|
235 |
+
args.gpu = args.rank % torch.cuda.device_count()
|
236 |
+
else:
|
237 |
+
print('Not using distributed mode')
|
238 |
+
setup_for_distributed(is_master=True) # hack
|
239 |
+
args.distributed = False
|
240 |
+
return
|
241 |
+
|
242 |
+
args.distributed = True
|
243 |
+
|
244 |
+
print("GPU::", args.gpu)
|
245 |
+
torch.cuda.set_device(args.gpu)
|
246 |
+
args.dist_backend = 'nccl'
|
247 |
+
print('| distributed init (rank {}): {}, gpu {}'.format(
|
248 |
+
args.rank, args.dist_url, args.gpu), flush=True)
|
249 |
+
torch.distributed.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
|
250 |
+
world_size=args.world_size, rank=args.rank)
|
251 |
+
torch.distributed.barrier()
|
252 |
+
setup_for_distributed(args.rank == 0)
|
253 |
+
|
254 |
+
|
255 |
+
class NativeScalerWithGradNormCount:
|
256 |
+
state_dict_key = "amp_scaler"
|
257 |
+
|
258 |
+
def __init__(self):
|
259 |
+
self._scaler = torch.cuda.amp.GradScaler()
|
260 |
+
|
261 |
+
def __call__(self, loss, optimizer, clip_grad=None, parameters=None, create_graph=False, update_grad=True):
|
262 |
+
self._scaler.scale(loss).backward(create_graph=create_graph)
|
263 |
+
if update_grad:
|
264 |
+
if clip_grad is not None:
|
265 |
+
assert parameters is not None
|
266 |
+
self._scaler.unscale_(optimizer) # unscale the gradients of optimizer's assigned params in-place
|
267 |
+
norm = torch.nn.utils.clip_grad_norm_(parameters, clip_grad)
|
268 |
+
else:
|
269 |
+
self._scaler.unscale_(optimizer)
|
270 |
+
norm = get_grad_norm_(parameters)
|
271 |
+
self._scaler.step(optimizer)
|
272 |
+
self._scaler.update()
|
273 |
+
else:
|
274 |
+
norm = None
|
275 |
+
return norm
|
276 |
+
|
277 |
+
def state_dict(self):
|
278 |
+
return self._scaler.state_dict()
|
279 |
+
|
280 |
+
def load_state_dict(self, state_dict):
|
281 |
+
self._scaler.load_state_dict(state_dict)
|
282 |
+
|
283 |
+
|
284 |
+
def get_grad_norm_(parameters, norm_type: float = 2.0) -> torch.Tensor:
|
285 |
+
if isinstance(parameters, torch.Tensor):
|
286 |
+
parameters = [parameters]
|
287 |
+
parameters = [p for p in parameters if p.grad is not None]
|
288 |
+
norm_type = float(norm_type)
|
289 |
+
if len(parameters) == 0:
|
290 |
+
return torch.tensor(0.)
|
291 |
+
device = parameters[0].grad.device
|
292 |
+
if norm_type == inf:
|
293 |
+
total_norm = max(p.grad.detach().abs().max().to(device) for p in parameters)
|
294 |
+
else:
|
295 |
+
total_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), norm_type).to(device) for p in parameters]), norm_type)
|
296 |
+
return total_norm
|
297 |
+
|
298 |
+
|
299 |
+
def save_model(args, epoch, model, model_without_ddp, optimizer, loss_scaler):
|
300 |
+
output_dir = Path(args.output_dir)
|
301 |
+
epoch_name = str(epoch)
|
302 |
+
if loss_scaler is not None:
|
303 |
+
checkpoint_paths = [output_dir / ('checkpoint.pth')]
|
304 |
+
for checkpoint_path in checkpoint_paths:
|
305 |
+
to_save = {
|
306 |
+
'model': model_without_ddp.state_dict(),
|
307 |
+
'optimizer': optimizer.state_dict(),
|
308 |
+
'epoch': epoch,
|
309 |
+
'scaler': loss_scaler.state_dict(),
|
310 |
+
'args': args,
|
311 |
+
}
|
312 |
+
|
313 |
+
save_on_master(to_save, checkpoint_path)
|
314 |
+
else:
|
315 |
+
client_state = {'epoch': epoch}
|
316 |
+
model.save_checkpoint(save_dir=args.output_dir, tag="checkpoint", client_state=client_state)
|
317 |
+
|
318 |
+
|
319 |
+
def load_model(model_without_ddp, optimizer, loss_scaler, path):
|
320 |
+
if path.startswith('https'):
|
321 |
+
checkpoint = torch.hub.load_state_dict_from_url(
|
322 |
+
path, map_location='cpu', check_hash=True)
|
323 |
+
else:
|
324 |
+
checkpoint = torch.load(path, map_location='cpu')
|
325 |
+
new_checkpoint = {}
|
326 |
+
if optimizer is not None:
|
327 |
+
optimizer.load_state_dict(checkpoint['optimizer'])
|
328 |
+
if loss_scaler is not None:
|
329 |
+
loss_scaler.load_state_dict(checkpoint['scaler'])
|
330 |
+
print(checkpoint.keys())
|
331 |
+
new_ckpt = {}
|
332 |
+
for key, value in checkpoint['model'].items():
|
333 |
+
key = key.replace("module.", "")
|
334 |
+
new_ckpt[key] = value
|
335 |
+
|
336 |
+
load_result = model_without_ddp.load_state_dict(new_ckpt, strict=True)
|
337 |
+
assert len(load_result.unexpected_keys) == 0, f"Unexpected keys: {load_result.unexpected_keys}"
|
338 |
+
print("Load checkpoint %s" % path)
|
339 |
+
return checkpoint['epoch']
|
340 |
+
|
341 |
+
|
342 |
+
def all_reduce_mean(x):
|
343 |
+
world_size = get_world_size()
|
344 |
+
if world_size > 1:
|
345 |
+
x_reduce = torch.tensor(x).cuda()
|
346 |
+
dist.all_reduce(x_reduce)
|
347 |
+
x_reduce /= world_size
|
348 |
+
return x_reduce.item()
|
349 |
+
else:
|
350 |
+
return x
|
351 |
+
|
352 |
+
|
353 |
+
def add_weight_decay(model, weight_decay=1e-5, skip_list=()):
|
354 |
+
decay = []
|
355 |
+
no_decay = []
|
356 |
+
for name, param in model.named_parameters():
|
357 |
+
if not param.requires_grad:
|
358 |
+
continue # frozen weights
|
359 |
+
if len(param.shape) == 1 or name.endswith(".bias") or name in skip_list:
|
360 |
+
no_decay.append(param)
|
361 |
+
else:
|
362 |
+
decay.append(param)
|
363 |
+
return [
|
364 |
+
{'params': no_decay, 'weight_decay': 0.},
|
365 |
+
{'params': decay, 'weight_decay': weight_decay}]
|
366 |
+
|
367 |
+
|
368 |
+
class DistributedSubEpochSampler(torch.utils.data.Sampler):
|
369 |
+
|
370 |
+
def __init__(self, dataset, num_replicas, rank, shuffle, split_epoch=1, seed=42):
|
371 |
+
self.dataset = dataset
|
372 |
+
self.num_replicas = num_replicas
|
373 |
+
self.rank = rank
|
374 |
+
self.shuffle = shuffle
|
375 |
+
self.split_epoch = split_epoch
|
376 |
+
self.seed = seed
|
377 |
+
|
378 |
+
self.num_samples = len(dataset) // (num_replicas * split_epoch)
|
379 |
+
|
380 |
+
def __len__(self):
|
381 |
+
return self.num_samples
|
382 |
+
|
383 |
+
def __iter__(self):
|
384 |
+
if self.shuffle:
|
385 |
+
# deterministically shuffle based on epoch and seed
|
386 |
+
g = torch.Generator()
|
387 |
+
g.manual_seed(self.seed + self.epoch // self.split_epoch)
|
388 |
+
indices = torch.randperm(len(self.dataset), generator=g).tolist() # type: ignore[arg-type]
|
389 |
+
else:
|
390 |
+
indices = list(range(len(self.dataset))) # type: ignore[arg-type]
|
391 |
+
|
392 |
+
indices = indices[self.rank * self.split_epoch + self.epoch % self.split_epoch::self.num_replicas * self.split_epoch]
|
393 |
+
assert len(indices) >= self.num_samples
|
394 |
+
indices = indices[:self.num_samples]
|
395 |
+
|
396 |
+
return iter(indices)
|
397 |
+
|
398 |
+
def set_epoch(self, epoch):
|
399 |
+
self.epoch = epoch
|
400 |
+
|
401 |
+
def download(url: str, root: str):
|
402 |
+
os.makedirs(root, exist_ok=True)
|
403 |
+
filename = os.path.basename(url)
|
404 |
+
download_target = os.path.join(root, filename)
|
405 |
+
|
406 |
+
if os.path.exists(download_target) and not os.path.isfile(download_target):
|
407 |
+
raise RuntimeError(f"{download_target} exists and is not a regular file")
|
408 |
+
|
409 |
+
if os.path.isfile(download_target):
|
410 |
+
return download_target
|
411 |
+
|
412 |
+
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
|
413 |
+
with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True, unit_divisor=1024) as loop:
|
414 |
+
while True:
|
415 |
+
buffer = source.read(8192)
|
416 |
+
if not buffer:
|
417 |
+
break
|
418 |
+
output.write(buffer)
|
419 |
+
loop.update(len(buffer))
|
420 |
+
|
421 |
+
|
422 |
+
return download_target
|