import gradio as gr import torch import os import numpy as np from groq import Groq from transformers import AutoModel, AutoTokenizer from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler from parler_tts import ParlerTTSForConditionalGeneration import soundfile as sf from langchain_community.embeddings import OpenAIEmbeddings from langchain_community.vectorstores import Chroma from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.chains import RetrievalQA from PIL import Image from decord import VideoReader, cpu from tavily import TavilyClient import requests from huggingface_hub import hf_hub_download from safetensors.torch import load_file # Initialize models client = Groq(api_key=os.environ.get("GROQ_API_KEY")) MODEL = 'llama3-groq-70b-8192-tool-use-preview' text_model = AutoModel.from_pretrained('openbmb/MiniCPM-V-2', trust_remote_code=True, device_map="auto", torch_dtype=torch.bfloat16) tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V-2', trust_remote_code=True) tts_model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-large-v1") tts_tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-large-v1") # Corrected image model and pipeline setup base = "stabilityai/stable-diffusion-xl-base-1.0" repo = "ByteDance/SDXL-Lightning" ckpt = "sdxl_lightning_4step_unet.safetensors" unet = UNet2DConditionModel.from_config(base, subfolder="unet").to("cuda", torch.float16) unet.load_state_dict(load_file(hf_hub_download(repo, ckpt), device="cuda")) image_pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16").to("cuda") image_pipe.scheduler = EulerDiscreteScheduler.from_config(image_pipe.scheduler.config, timestep_spacing="trailing") # Tavily Client tavily_client = TavilyClient(api_key="tvly-YOUR_API_KEY") # Voice output function def play_voice_output(response): description = "Jon's voice is monotone yet slightly fast in delivery, with a very close recording that almost has no background noise." input_ids = tts_tokenizer(description, return_tensors="pt").input_ids.to('cuda') prompt_input_ids = tts_tokenizer(response, return_tensors="pt").input_ids.to('cuda') generation = tts_model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids) audio_arr = generation.cpu().numpy().squeeze() sf.write("output.wav", audio_arr, tts_model.config.sampling_rate) return "output.wav" # NumPy Calculation function def numpy_calculate(code: str) -> str: try: local_dict = {} exec(code, {"np": np}, local_dict) result = local_dict.get("result", "No result found") return str(result) except Exception as e: return f"An error occurred: {str(e)}" # Function to use Langchain for RAG def use_langchain_rag(file_name, file_content, query): # Split the document into chunks text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0) docs = text_splitter.create_documents([file_content]) # Create embeddings and store in the vector database embeddings = OpenAIEmbeddings() db = Chroma.from_documents(docs, embeddings, persist_directory=".chroma_db") # Use a persistent directory # Create a question-answering chain qa = RetrievalQA.from_chain_type(llm=OpenAI(), chain_type="stuff", retriever=db.as_retriever()) # Get the answer return qa.run(query) # Function to encode video def encode_video(video_path): MAX_NUM_FRAMES = 64 vr = VideoReader(video_path, ctx=cpu(0)) sample_fps = round(vr.get_avg_fps() / 1) frame_idx = [i for i in range(0, len(vr), sample_fps)] if len(frame_idx) > MAX_NUM_FRAMES: frame_idx = uniform_sample(frame_idx, MAX_NUM_FRAMES) frames = vr.get_batch(frame_idx).asnumpy() frames = [Image.fromarray(v.astype('uint8')) for v in frames] return frames # Web search function def web_search(query): answer = tavily_client.qna_search(query=query) return answer # Function to handle different input types def handle_input(user_prompt, image=None, video=None, audio=None, doc=None, websearch=False): # Voice input handling if audio: transcription = client.audio.transcriptions.create( file=(audio.name, audio.read()), model="whisper-large-v3" ) user_prompt = transcription.text # If user uploaded an image and text, use MiniCPM model if image: image = Image.open(image).convert('RGB') messages = [{"role": "user", "content": [image, user_prompt]}] response = text_model.chat(image=None, msgs=messages, tokenizer=tokenizer) return response # Determine which tool to use if doc: file_content = doc.read().decode('utf-8') response = use_langchain_rag(doc.name, file_content, user_prompt) elif "calculate" in user_prompt.lower(): response = numpy_calculate(user_prompt) elif "generate" in user_prompt.lower() and ("image" in user_prompt.lower() or "picture" in user_prompt.lower()): response = image_pipe(prompt=user_prompt, num_inference_steps=20, guidance_scale=7.5) elif websearch: response = web_search(user_prompt) else: chat_completion = client.chat.completions.create( messages=[ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": user_prompt} ], model=MODEL, ) response = chat_completion.choices[0].message.content return response @spaces.GPU() def main_interface(user_prompt, image=None, video=None, audio=None, doc=None, voice_only=False, websearch=False): text_model.to(device='cuda', dtype=torch.bfloat16) tts_model.to("cuda") unet.to("cuda", torch.float16) image_pipe.to("cuda") response = handle_input(user_prompt, image=image, video=video, audio=audio, doc=doc, websearch=websearch) if voice_only: audio_file = play_voice_output(response) return response, audio_file # Return both text and audio outputs else: return response, None # Return only the text output, no audio # Gradio UI Setup def create_ui(): with gr.Blocks() as demo: gr.Markdown("# AI Assistant") with gr.Row(): with gr.Column(scale=2): user_prompt = gr.Textbox(placeholder="Type your message here...", lines=1) with gr.Column(scale=1): image_input = gr.Image(type="filepath", label="Upload an image", elem_id="image-icon") video_input = gr.Video(label="Upload a video", elem_id="video-icon") audio_input = gr.Audio(type="filepath", label="Upload audio", elem_id="mic-icon") doc_input = gr.File(type="filepath", label="Upload a document", elem_id="document-icon") voice_only_mode = gr.Checkbox(label="Enable Voice Only Mode", elem_id="voice-only-mode") websearch_mode = gr.Checkbox(label="Enable Web Search", elem_id="websearch-mode") with gr.Column(scale=1): submit = gr.Button("Submit") output_label = gr.Label(label="Output") audio_output = gr.Audio(label="Audio Output", visible=False) submit.click( fn=main_interface, inputs=[user_prompt, image_input, video_input, audio_input, doc_input, voice_only_mode, websearch_mode], outputs=[output_label, audio_output] # Expecting a string and audio file ) # Voice-only mode UI voice_only_mode.change( lambda x: gr.update(visible=not x), inputs=voice_only_mode, outputs=[user_prompt, image_input, video_input, doc_input, websearch_mode, submit] ) voice_only_mode.change( lambda x: gr.update(visible=x), inputs=voice_only_mode, outputs=[audio_input] ) return demo # Launch the app demo = create_ui() demo.launch(inline=False)