Spaces:
Running
on
Zero
Running
on
Zero
VanguardAI
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -8,16 +8,20 @@ from transformers import AutoModel, AutoTokenizer
|
|
8 |
from diffusers import StableDiffusion3Pipeline
|
9 |
from parler_tts import ParlerTTSForConditionalGeneration
|
10 |
import soundfile as sf
|
11 |
-
from
|
12 |
-
from
|
13 |
-
from
|
14 |
from PIL import Image
|
15 |
from tavily import TavilyClient
|
16 |
import requests
|
17 |
from huggingface_hub import hf_hub_download
|
18 |
from safetensors.torch import load_file
|
19 |
-
from
|
20 |
-
from
|
|
|
|
|
|
|
|
|
21 |
|
22 |
# Initialize models and clients
|
23 |
MODEL = 'llama3-groq-70b-8192-tool-use-preview'
|
@@ -48,38 +52,71 @@ def play_voice_output(response):
|
|
48 |
return "output.wav"
|
49 |
|
50 |
# NumPy Code Calculator Tool
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
60 |
|
61 |
# Web Search Tool
|
62 |
-
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
65 |
|
66 |
# Image Generation Tool
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
76 |
|
77 |
# Document Question Answering Tool
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
# Function to handle different input types and choose the right tool
|
85 |
def handle_input(user_prompt, image=None, audio=None, websearch=False, document=None):
|
@@ -93,43 +130,38 @@ def handle_input(user_prompt, image=None, audio=None, websearch=False, document=
|
|
93 |
user_prompt = transcription.text
|
94 |
|
95 |
tools = [
|
96 |
-
|
97 |
-
|
98 |
]
|
99 |
|
100 |
# Add the web search tool only if websearch mode is enabled
|
101 |
if websearch:
|
102 |
-
tools.append(
|
103 |
|
104 |
# Add the document question answering tool only if a document is provided
|
105 |
if document:
|
106 |
-
|
107 |
-
tools.append(FunctionTool.from_defaults(fn=document_question_answering, name="Document", docs=docs))
|
108 |
|
109 |
-
llm =
|
110 |
-
agent =
|
|
|
111 |
|
112 |
if image:
|
113 |
image = Image.open(image).convert('RGB')
|
114 |
messages = [{"role": "user", "content": [image, user_prompt]}]
|
115 |
response = vqa_model.chat(image=None, msgs=messages, tokenizer=tokenizer)
|
116 |
else:
|
117 |
-
response =
|
118 |
-
|
119 |
-
# Extract the content from AgentChatResponse to return as a string
|
120 |
-
if isinstance(response, AgentChatResponse):
|
121 |
-
response = response.response
|
122 |
|
123 |
return response
|
124 |
|
125 |
-
|
126 |
-
# Gradio UI Setup
|
127 |
def create_ui():
|
128 |
with gr.Blocks(css="""
|
129 |
/* Overall Styling */
|
130 |
body {
|
131 |
-
font-family: '
|
132 |
-
background
|
133 |
margin: 0;
|
134 |
padding: 0;
|
135 |
color: #333;
|
@@ -139,8 +171,14 @@ def create_ui():
|
|
139 |
.gradio-container h1 {
|
140 |
text-align: center;
|
141 |
padding: 20px 0;
|
142 |
-
background
|
143 |
color: white;
|
|
|
|
|
|
|
|
|
|
|
|
|
144 |
}
|
145 |
|
146 |
/* Input Area Styling */
|
@@ -149,6 +187,10 @@ def create_ui():
|
|
149 |
justify-content: space-around;
|
150 |
align-items: center;
|
151 |
padding: 20px;
|
|
|
|
|
|
|
|
|
152 |
}
|
153 |
|
154 |
.gradio-container .gr-column {
|
@@ -159,40 +201,135 @@ def create_ui():
|
|
159 |
/* Textbox Styling */
|
160 |
.gradio-container textarea {
|
161 |
width: calc(100% - 20px);
|
162 |
-
padding:
|
163 |
-
border: 2px solid #
|
164 |
-
border-radius:
|
165 |
-
font-size:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
}
|
167 |
|
168 |
/* Button Styling */
|
169 |
.gradio-container button {
|
170 |
-
background
|
171 |
color: white;
|
172 |
-
padding:
|
173 |
border: none;
|
174 |
-
border-radius:
|
175 |
cursor: pointer;
|
176 |
-
font-size:
|
177 |
-
|
|
|
|
|
178 |
}
|
179 |
|
180 |
.gradio-container button:hover {
|
181 |
-
background
|
|
|
|
|
|
|
|
|
|
|
182 |
}
|
183 |
|
184 |
/* Output Area Styling */
|
185 |
.gradio-container .output-area {
|
186 |
padding: 20px;
|
187 |
text-align: center;
|
|
|
|
|
|
|
|
|
188 |
}
|
189 |
|
190 |
/* Image Styling */
|
191 |
.gradio-container img {
|
192 |
max-width: 100%;
|
193 |
height: auto;
|
194 |
-
border-radius:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
""") as demo:
|
197 |
gr.Markdown("# AI Assistant")
|
198 |
with gr.Row():
|
@@ -257,7 +394,6 @@ def main_interface(user_prompt, image=None, audio=None, voice_only=False, websea
|
|
257 |
else:
|
258 |
return response, None
|
259 |
|
260 |
-
|
261 |
# Launch the UI
|
262 |
demo = create_ui()
|
263 |
demo.launch()
|
|
|
8 |
from diffusers import StableDiffusion3Pipeline
|
9 |
from parler_tts import ParlerTTSForConditionalGeneration
|
10 |
import soundfile as sf
|
11 |
+
from langchain.agents import AgentExecutor, create_react_agent
|
12 |
+
from langchain.tools import BaseTool
|
13 |
+
from langchain_groq import ChatGroq
|
14 |
from PIL import Image
|
15 |
from tavily import TavilyClient
|
16 |
import requests
|
17 |
from huggingface_hub import hf_hub_download
|
18 |
from safetensors.torch import load_file
|
19 |
+
from langchain.schema import AIMessage
|
20 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
21 |
+
from langchain.vectorstores import FAISS
|
22 |
+
from langchain.document_loaders import TextLoader
|
23 |
+
from langchain.text_splitter import CharacterTextSplitter
|
24 |
+
from langchain.chains import RetrievalQA
|
25 |
|
26 |
# Initialize models and clients
|
27 |
MODEL = 'llama3-groq-70b-8192-tool-use-preview'
|
|
|
52 |
return "output.wav"
|
53 |
|
54 |
# NumPy Code Calculator Tool
|
55 |
+
class NumpyCodeCalculator(BaseTool):
|
56 |
+
name = "Numpy"
|
57 |
+
description = "Useful for performing numpy computations"
|
58 |
+
|
59 |
+
def _run(self, query: str) -> str:
|
60 |
+
try:
|
61 |
+
local_dict = {"np": np}
|
62 |
+
exec(query, local_dict)
|
63 |
+
result = local_dict.get("result", "No result found")
|
64 |
+
return str(result)
|
65 |
+
except Exception as e:
|
66 |
+
return f"Error: {e}"
|
67 |
|
68 |
# Web Search Tool
|
69 |
+
class WebSearch(BaseTool):
|
70 |
+
name = "Web"
|
71 |
+
description = "Useful for searching the web for information"
|
72 |
+
|
73 |
+
def _run(self, query: str) -> str:
|
74 |
+
answer = tavily_client.qna_search(query=query)
|
75 |
+
return answer
|
76 |
|
77 |
# Image Generation Tool
|
78 |
+
class ImageGeneration(BaseTool):
|
79 |
+
name = "Image"
|
80 |
+
description = "Useful for generating images based on text descriptions"
|
81 |
+
|
82 |
+
def _run(self, query: str) -> str:
|
83 |
+
image = pipe(
|
84 |
+
query,
|
85 |
+
negative_prompt="",
|
86 |
+
num_inference_steps=15,
|
87 |
+
guidance_scale=7.0,
|
88 |
+
).images[0]
|
89 |
+
image.save("output.jpg")
|
90 |
+
return "output.jpg"
|
91 |
|
92 |
# Document Question Answering Tool
|
93 |
+
class DocumentQuestionAnswering(BaseTool):
|
94 |
+
name = "Document"
|
95 |
+
description = "Useful for answering questions about a specific document"
|
96 |
+
|
97 |
+
def __init__(self, document):
|
98 |
+
super().__init__()
|
99 |
+
self.document = document
|
100 |
+
self.qa_chain = self._setup_qa_chain()
|
101 |
+
|
102 |
+
def _setup_qa_chain(self):
|
103 |
+
loader = TextLoader(self.document)
|
104 |
+
documents = loader.load()
|
105 |
+
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
106 |
+
texts = text_splitter.split_documents(documents)
|
107 |
+
embeddings = HuggingFaceEmbeddings()
|
108 |
+
db = FAISS.from_documents(texts, embeddings)
|
109 |
+
retriever = db.as_retriever()
|
110 |
+
qa_chain = RetrievalQA.from_chain_type(
|
111 |
+
llm=ChatGroq(model=MODEL, api_key=os.environ.get("GROQ_API_KEY")),
|
112 |
+
chain_type="stuff",
|
113 |
+
retriever=retriever,
|
114 |
+
)
|
115 |
+
return qa_chain
|
116 |
+
|
117 |
+
def _run(self, query: str) -> str:
|
118 |
+
response = self.qa_chain.run(query)
|
119 |
+
return str(response)
|
120 |
|
121 |
# Function to handle different input types and choose the right tool
|
122 |
def handle_input(user_prompt, image=None, audio=None, websearch=False, document=None):
|
|
|
130 |
user_prompt = transcription.text
|
131 |
|
132 |
tools = [
|
133 |
+
NumpyCodeCalculator(),
|
134 |
+
ImageGeneration(),
|
135 |
]
|
136 |
|
137 |
# Add the web search tool only if websearch mode is enabled
|
138 |
if websearch:
|
139 |
+
tools.append(WebSearch())
|
140 |
|
141 |
# Add the document question answering tool only if a document is provided
|
142 |
if document:
|
143 |
+
tools.append(DocumentQuestionAnswering(document))
|
|
|
144 |
|
145 |
+
llm = ChatGroq(model=MODEL, api_key=os.environ.get("GROQ_API_KEY"))
|
146 |
+
agent = create_react_agent(llm, tools, verbose=True)
|
147 |
+
agent_executor = AgentExecutor(agent=agent, tools=tools, verbose=True)
|
148 |
|
149 |
if image:
|
150 |
image = Image.open(image).convert('RGB')
|
151 |
messages = [{"role": "user", "content": [image, user_prompt]}]
|
152 |
response = vqa_model.chat(image=None, msgs=messages, tokenizer=tokenizer)
|
153 |
else:
|
154 |
+
response = agent_executor.run(user_prompt)
|
|
|
|
|
|
|
|
|
155 |
|
156 |
return response
|
157 |
|
158 |
+
|
|
|
159 |
def create_ui():
|
160 |
with gr.Blocks(css="""
|
161 |
/* Overall Styling */
|
162 |
body {
|
163 |
+
font-family: 'Poppins', sans-serif;
|
164 |
+
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
|
165 |
margin: 0;
|
166 |
padding: 0;
|
167 |
color: #333;
|
|
|
171 |
.gradio-container h1 {
|
172 |
text-align: center;
|
173 |
padding: 20px 0;
|
174 |
+
background: linear-gradient(45deg, #007bff, #00c6ff);
|
175 |
color: white;
|
176 |
+
font-size: 2.5em;
|
177 |
+
font-weight: bold;
|
178 |
+
letter-spacing: 1px;
|
179 |
+
text-transform: uppercase;
|
180 |
+
margin: 0;
|
181 |
+
box-shadow: 0px 4px 8px rgba(0, 0, 0, 0.2);
|
182 |
}
|
183 |
|
184 |
/* Input Area Styling */
|
|
|
187 |
justify-content: space-around;
|
188 |
align-items: center;
|
189 |
padding: 20px;
|
190 |
+
background-color: white;
|
191 |
+
border-radius: 10px;
|
192 |
+
box-shadow: 0px 6px 12px rgba(0, 0, 0, 0.1);
|
193 |
+
margin-bottom: 20px;
|
194 |
}
|
195 |
|
196 |
.gradio-container .gr-column {
|
|
|
201 |
/* Textbox Styling */
|
202 |
.gradio-container textarea {
|
203 |
width: calc(100% - 20px);
|
204 |
+
padding: 15px;
|
205 |
+
border: 2px solid #007bff;
|
206 |
+
border-radius: 8px;
|
207 |
+
font-size: 1.1em;
|
208 |
+
transition: border-color 0.3s, box-shadow 0.3s;
|
209 |
+
}
|
210 |
+
|
211 |
+
.gradio-container textarea:focus {
|
212 |
+
border-color: #00c6ff;
|
213 |
+
box-shadow: 0px 0px 8px rgba(0, 198, 255, 0.5);
|
214 |
+
outline: none;
|
215 |
}
|
216 |
|
217 |
/* Button Styling */
|
218 |
.gradio-container button {
|
219 |
+
background: linear-gradient(45deg, #007bff, #00c6ff);
|
220 |
color: white;
|
221 |
+
padding: 15px 25px;
|
222 |
border: none;
|
223 |
+
border-radius: 8px;
|
224 |
cursor: pointer;
|
225 |
+
font-size: 1.2em;
|
226 |
+
font-weight: bold;
|
227 |
+
transition: background 0.3s, transform 0.3s;
|
228 |
+
box-shadow: 0px 4px 8px rgba(0, 0, 0, 0.1);
|
229 |
}
|
230 |
|
231 |
.gradio-container button:hover {
|
232 |
+
background: linear-gradient(45deg, #0056b3, #009bff);
|
233 |
+
transform: translateY(-3px);
|
234 |
+
}
|
235 |
+
|
236 |
+
.gradio-container button:active {
|
237 |
+
transform: translateY(0);
|
238 |
}
|
239 |
|
240 |
/* Output Area Styling */
|
241 |
.gradio-container .output-area {
|
242 |
padding: 20px;
|
243 |
text-align: center;
|
244 |
+
background-color: #f7f9fc;
|
245 |
+
border-radius: 10px;
|
246 |
+
box-shadow: 0px 6px 12px rgba(0, 0, 0, 0.1);
|
247 |
+
margin-top: 20px;
|
248 |
}
|
249 |
|
250 |
/* Image Styling */
|
251 |
.gradio-container img {
|
252 |
max-width: 100%;
|
253 |
height: auto;
|
254 |
+
border-radius: 10px;
|
255 |
+
box-shadow: 0px 4px 8px rgba(0, 0, 0, 0.1);
|
256 |
+
transition: transform 0.3s, box-shadow 0.3s;
|
257 |
+
}
|
258 |
+
|
259 |
+
.gradio-container img:hover {
|
260 |
+
transform: scale(1.05);
|
261 |
+
box-shadow: 0px 6px 12px rgba(0, 0, 0, 0.2);
|
262 |
+
}
|
263 |
+
|
264 |
+
/* Checkbox Styling */
|
265 |
+
.gradio-container input[type="checkbox"] {
|
266 |
+
width: 20px;
|
267 |
+
height: 20px;
|
268 |
+
cursor: pointer;
|
269 |
+
accent-color: #007bff;
|
270 |
+
transition: transform 0.3s;
|
271 |
+
}
|
272 |
+
|
273 |
+
.gradio-container input[type="checkbox"]:checked {
|
274 |
+
transform: scale(1.2);
|
275 |
+
}
|
276 |
+
|
277 |
+
/* Audio and Document Upload Styling */
|
278 |
+
.gradio-container .gr-file-upload input[type="file"] {
|
279 |
+
width: 100%;
|
280 |
+
padding: 10px;
|
281 |
+
border: 2px solid #007bff;
|
282 |
+
border-radius: 8px;
|
283 |
+
cursor: pointer;
|
284 |
+
background-color: white;
|
285 |
+
transition: border-color 0.3s, background-color 0.3s;
|
286 |
+
}
|
287 |
+
|
288 |
+
.gradio-container .gr-file-upload input[type="file"]:hover {
|
289 |
+
border-color: #00c6ff;
|
290 |
+
background-color: #f0f8ff;
|
291 |
+
}
|
292 |
+
|
293 |
+
/* Advanced Tooltip Styling */
|
294 |
+
.gradio-container .gr-tooltip {
|
295 |
+
position: relative;
|
296 |
+
display: inline-block;
|
297 |
+
cursor: pointer;
|
298 |
+
}
|
299 |
+
|
300 |
+
.gradio-container .gr-tooltip .tooltiptext {
|
301 |
+
visibility: hidden;
|
302 |
+
width: 200px;
|
303 |
+
background-color: black;
|
304 |
+
color: #fff;
|
305 |
+
text-align: center;
|
306 |
+
border-radius: 6px;
|
307 |
+
padding: 5px;
|
308 |
+
position: absolute;
|
309 |
+
z-index: 1;
|
310 |
+
bottom: 125%;
|
311 |
+
left: 50%;
|
312 |
+
margin-left: -100px;
|
313 |
+
opacity: 0;
|
314 |
+
transition: opacity 0.3s;
|
315 |
+
}
|
316 |
+
|
317 |
+
.gradio-container .gr-tooltip:hover .tooltiptext {
|
318 |
+
visibility: visible;
|
319 |
+
opacity: 1;
|
320 |
}
|
321 |
+
|
322 |
+
/* Footer Styling */
|
323 |
+
.gradio-container footer {
|
324 |
+
text-align: center;
|
325 |
+
padding: 10px;
|
326 |
+
background: #007bff;
|
327 |
+
color: white;
|
328 |
+
font-size: 0.9em;
|
329 |
+
border-radius: 0 0 10px 10px;
|
330 |
+
box-shadow: 0px -2px 8px rgba(0, 0, 0, 0.1);
|
331 |
+
}
|
332 |
+
|
333 |
""") as demo:
|
334 |
gr.Markdown("# AI Assistant")
|
335 |
with gr.Row():
|
|
|
394 |
else:
|
395 |
return response, None
|
396 |
|
|
|
397 |
# Launch the UI
|
398 |
demo = create_ui()
|
399 |
demo.launch()
|