VanguardAI's picture
Update app.py
9748b93 verified
raw
history blame
9.53 kB
import gradio as gr
import torch
import os
import numpy as np
from groq import Groq
import spaces
from transformers import AutoModel, AutoTokenizer
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
from parler_tts import ParlerTTSForConditionalGeneration
import soundfile as sf
from langchain_community.embeddings import OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains import RetrievalQA
from langchain import LLMChain, PromptTemplate
from langchain.agents import AgentExecutor, Tool, ZeroShotAgent
from langchain.llms import OpenAI
from PIL import Image
from decord import VideoReader, cpu
from tavily import TavilyClient
import requests
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
# Initialize models and clients
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
MODEL = 'llama3-groq-70b-8192-tool-use-preview'
vqa_model = AutoModel.from_pretrained('openbmb/MiniCPM-V-2', trust_remote_code=True,
device_map="auto", torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V-2', trust_remote_code=True)
tts_model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-large-v1")
tts_tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-large-v1")
# Image generation model
base = "stabilityai/stable-diffusion-xl-base-1.0"
repo = "ByteDance/SDXL-Lightning"
ckpt = "sdxl_lightning_4step_unet.safetensors"
unet = UNet2DConditionModel.from_config(base, subfolder="unet")
unet.load_state_dict(load_file(hf_hub_download(repo, ckpt)))
image_pipe = StableDiffusionXLPipeline.from_pretrained(base, unet=unet, torch_dtype=torch.float16, variant="fp16")
image_pipe.scheduler = EulerDiscreteScheduler.from_config(image_pipe.scheduler.config, timestep_spacing="trailing")
# Tavily Client for web search
tavily_client = TavilyClient(api_key=os.environ.get("TAVILY_API"))
# Function to play voice output
def play_voice_output(response):
description = "Jon's voice is monotone yet slightly fast in delivery, with a very close recording that almost has no background noise."
input_ids = tts_tokenizer(description, return_tensors="pt").input_ids.to('cuda')
prompt_input_ids = tts_tokenizer(response, return_tensors="pt").input_ids.to('cuda')
generation = tts_model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids)
audio_arr = generation.cpu().numpy().squeeze()
sf.write("output.wav", audio_arr, tts_model.config.sampling_rate)
return "output.wav"
# NumPy Code Calculator Tool
def numpy_code_calculator(query):
try:
llm_response = client.chat.completions.create(
model=MODEL,
messages=[
{"role": "user", "content": f"Write NumPy code to: {query}"}
]
)
code = llm_response.choices[0].message.content
print(f"Generated NumPy code:\n{code}")
# Execute the code in a safe environment
local_dict = {"np": np}
exec(code, local_dict)
result = local_dict.get("result", "No result found")
return str(result)
except Exception as e:
return f"Error: {e}"
# Web Search Tool
def web_search(query):
answer = tavily_client.qna_search(query=query)
return answer
# Image Generation Tool
def image_generation(query):
image = image_pipe(prompt=query, num_inference_steps=20, guidance_scale=7.5).images[0]
image.save("output.jpg")
return "output.jpg"
# Document Question Answering Tool
def doc_question_answering(query, file_path):
with open(file_path, 'r') as f:
file_content = f.read()
# Split the document into smaller chunks
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.create_documents([file_content])
# Create embeddings using the groq model
embeddings = OpenAIEmbeddings() # If you're using a custom embeddings model, replace this line with the corresponding embeddings model for groq
# Set up the Chroma database for document retrieval
db = Chroma.from_documents(docs, embeddings, persist_directory=".chroma_db")
# Create a custom function to use groq for the question-answering step
def groq_llm(query):
response = client.chat.completions.create(
model=MODEL,
messages=[{"role": "user", "content": query}]
)
return response.choices[0].message.content
# Set up the RetrievalQA chain using the custom groq LLM function
qa = RetrievalQA.from_chain_type(llm=groq_llm, chain_type="stuff", retriever=db.as_retriever())
# Run the QA process with the groq model
return qa.run(query)
# Function to handle different input types and choose the right tool
def handle_input(user_prompt, image=None, video=None, audio=None, doc=None, websearch=False):
if audio:
if isinstance(audio, str):
audio = open(audio, "rb")
transcription = client.audio.transcriptions.create(
file=(audio.name, audio.read()),
model="whisper-large-v3"
)
user_prompt = transcription.text
tools = [
Tool(
name="Numpy Code Calculator",
func=numpy_code_calculator,
description="Useful for when you need to perform mathematical calculations using NumPy. Provide the calculation you want to perform.",
),
Tool(
name="Web Search",
func=web_search,
description="Useful for when you need to find information from the real world.",
),
Tool(
name="Image Generation",
func=image_generation,
description="Useful for when you need to generate an image based on a description.",
),
]
if doc:
tools.append(
Tool(
name="Document Question Answering",
func=lambda query: doc_question_answering(query, doc.name),
description="Useful for when you need to answer questions about the uploaded document.",
)
)
# Add this new code block:
prefix = """You are an AI assistant. You have access to the following tools:"""
suffix = """Begin!"
{chat_history}
Human: {input}
AI: I will do my best to assist you. Let me think about this step-by-step:"""
prompt = ZeroShotAgent.create_prompt(
tools,
prefix=prefix,
suffix=suffix,
input_variables=["input", "chat_history"]
)
llm = Groq(model=MODEL)
llm_chain = LLMChain(llm=llm, prompt=prompt)
agent = ZeroShotAgent(llm_chain=llm_chain, tools=tools, verbose=True)
agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True)
if image:
image = Image.open(image).convert('RGB')
messages = [{"role": "user", "content": [image, user_prompt]}]
response = vqa_model.chat(image=None, msgs=messages, tokenizer=tokenizer)
return response
if websearch:
response = agent_executor.run(f"{user_prompt} Use the Web Search tool if necessary.")
else:
response = agent_executor.run(user_prompt)
return response
# Gradio UI Setup
def create_ui():
with gr.Blocks() as demo:
gr.Markdown("# AI Assistant")
with gr.Row():
with gr.Column(scale=2):
user_prompt = gr.Textbox(placeholder="Type your message here...", lines=1)
with gr.Column(scale=1):
image_input = gr.Image(type="filepath", label="Upload an image", elem_id="image-icon")
audio_input = gr.Audio(type="filepath", label="Upload audio", elem_id="mic-icon")
doc_input = gr.File(type="filepath", label="Upload a document", elem_id="document-icon")
voice_only_mode = gr.Checkbox(label="Enable Voice Only Mode", elem_id="voice-only-mode")
websearch_mode = gr.Checkbox(label="Enable Web Search", elem_id="websearch-mode")
with gr.Column(scale=1):
submit = gr.Button("Submit")
output_label = gr.Label(label="Output")
audio_output = gr.Audio(label="Audio Output", visible=False)
submit.click(
fn=main_interface,
inputs=[user_prompt, image_input, audio_input, doc_input, voice_only_mode, websearch_mode],
outputs=[output_label, audio_output]
)
voice_only_mode.change(
lambda x: gr.update(visible=not x),
inputs=voice_only_mode,
outputs=[user_prompt, image_input, doc_input, websearch_mode, submit]
)
voice_only_mode.change(
lambda x: gr.update(visible=x),
inputs=voice_only_mode,
outputs=[audio_input]
)
return demo
# Main interface function
@spaces.GPU()
def main_interface(user_prompt, image=None, audio=None, doc=None, voice_only=False, websearch=False):
vqa_model.to(device='cuda', dtype=torch.bfloat16)
tts_model.to("cuda")
unet.to("cuda")
image_pipe.to("cuda")
response = handle_input(user_prompt, image=image, audio=audio, doc=doc, websearch=websearch)
if voice_only:
audio_output = play_voice_output(response)
return "Response generated.", audio_output
else:
return response, None
# Launch the UI
demo = create_ui()
demo.launch()