VanguardAI's picture
Update app.py
ed2f5ce verified
raw
history blame
7.87 kB
import gradio as gr
import torch
import os
import numpy as np
from groq import Groq
from transformers import AutoModel, AutoTokenizer
from diffusers import StableDiffusionXLPipeline, UNet2DConditionModel, EulerDiscreteScheduler
from parler_tts import ParlerTTSForConditionalGeneration
import soundfile as sf
from llama_index import SimpleDirectoryReader, GPTSimpleVectorIndex, LLMPredictor, ServiceContext
from llama_index.langchain_helpers.text_splitter import RecursiveCharacterTextSplitter
from langchain import OpenAI
from PIL import Image
from decord import VideoReader, cpu
import requests
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
MODEL = 'llama3-groq-70b-8192-tool-use-preview'
# Load models for text, speech, and image processing
text_model = AutoModel.from_pretrained('openbmb/MiniCPM-V-2_6', trust_remote_code=True,
attn_implementation='sdpa', torch_dtype=torch.bfloat16).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V-2_6', trust_remote_code=True)
tts_model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-large-v1").to('cuda')
tts_tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-large-v1")
image_model = UNet2DConditionModel.from_config("stabilityai/stable-diffusion-xl-base-1.0", subfolder="unet").to("cuda", torch.float16)
image_pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", unet=image_model, torch_dtype=torch.float16, variant="fp16").to("cuda")
image_pipe.scheduler = EulerDiscreteScheduler.from_config(image_pipe.scheduler.config, timestep_spacing="trailing")
# Initialize voice-only mode
def play_voice_output(response):
description = "Jon's voice is monotone yet slightly fast in delivery, with a very close recording that almost has no background noise."
input_ids = tts_tokenizer(description, return_tensors="pt").input_ids.to('cuda')
prompt_input_ids = tts_tokenizer(response, return_tensors="pt").input_ids.to('cuda')
generation = tts_model.generate(input_ids=input_ids, prompt_input_ids=prompt_input_ids)
audio_arr = generation.cpu().numpy().squeeze()
sf.write("output.wav", audio_arr, tts_model.config.sampling_rate)
return "output.wav"
# Web search function
def web_search(query):
api_key = os.environ.get("BING_API_KEY")
search_url = "https://api.bing.microsoft.com/v7.0/search"
headers = {"Ocp-Apim-Subscription-Key": api_key}
params = {"q": query, "textDecorations": True, "textFormat": "HTML"}
response = requests.get(search_url, headers=headers, params=params)
response.raise_for_status()
search_results = response.json()
snippets = [result['snippet'] for result in search_results.get('webPages', {}).get('value', [])]
return "\n".join(snippets)
# NumPy Calculation function
def numpy_calculate(code: str) -> str:
try:
local_dict = {}
exec(code, {"np": np}, local_dict)
result = local_dict.get("result", "No result found")
return str(result)
except Exception as e:
return f"An error occurred: {str(e)}"
# Function to handle different input types
def handle_input(user_prompt, image=None, video=None, audio=None, doc=None):
messages = [{"role": "user", "content": user_prompt}]
if audio:
transcription = client.audio.transcriptions.create(
file=(audio.name, audio.read()),
model="whisper-large-v3"
)
user_prompt = transcription.text
if doc:
index = create_rag_index(doc.name, doc.read())
response = index.query(user_prompt)
elif image and not video:
image = Image.open(image).convert('RGB')
messages[0]['content'] = [image, user_prompt]
response = text_model.chat(image=None, msgs=messages, tokenizer=tokenizer)
elif video:
frames = encode_video(video.name)
messages[0]['content'] = frames + [user_prompt]
response = text_model.chat(image=None, msgs=messages, tokenizer=tokenizer)
else:
response = client.chat.completions.create(
model=MODEL,
messages=messages,
tools=initialize_tools()
).choices[0].message.content
return response
# Function to create RAG index using LlamaIndex or Langchain
def create_rag_index(file_name, file_content):
docs = SimpleDirectoryReader(file_name, file_content).load_data()
service_context = ServiceContext.from_defaults(llm_predictor=LLMPredictor(llm=OpenAI(temperature=0)))
index = GPTSimpleVectorIndex.from_documents(docs, service_context=service_context)
return index
# Function to encode video
def encode_video(video_path):
MAX_NUM_FRAMES = 64
vr = VideoReader(video_path, ctx=cpu(0))
sample_fps = round(vr.get_avg_fps() / 1)
frame_idx = [i for i in range(0, len(vr), sample_fps)]
if len(frame_idx) > MAX_NUM_FRAMES:
frame_idx = uniform_sample(frame_idx, MAX_NUM_FRAMES)
frames = vr.get_batch(frame_idx).asnumpy()
frames = [Image.fromarray(v.astype('uint8')) for v in frames]
return frames
# Initialize tools with web search and NumPy calculation
def initialize_tools():
tools = [
{
"type": "function",
"function": {
"name": "calculate",
"description": "Evaluate a mathematical expression",
"parameters": {
"type": "object",
"properties": {
"expression": {"type": "string", "description": "The mathematical expression to evaluate"}
},
"required": ["expression"]
},
}
},
{
"type": "function",
"function": {
"name": "web_search",
"description": "Perform a web search",
"parameters": {
"type": "object",
"properties": {
"query": {"type": "string", "description": "The search query"}
},
"required": ["query"]
},
"implementation": web_search
}
},
{
"type": "function",
"function": {
"name": "numpy_calculate",
"description": "Execute NumPy-based Python code for calculations",
"parameters": {
"type": "object",
"properties": {
"code": {"type": "string", "description": "The Python code with NumPy operations"}
},
"required": ["code"]
},
"implementation": numpy_calculate
}
}
]
return tools
@spaces.GPU()
# Gradio Interface
def main_interface(user_prompt, image=None, video=None, audio=None, doc=None, voice_only=False):
response = handle_input(user_prompt, image=image, video=video, audio=audio, doc=doc)
if voice_only:
audio_file = play_voice_output(response)
return gr.Audio.update(value=audio_file, visible=True)
else:
return response
# Gradio App Setup
with gr.Blocks() as demo:
user_prompt = gr.Textbox(placeholder="Type your message here...", lines=1)
image_input = gr.Image(type="file", label="Upload an image")
video_input = gr.Video(type="file", label="Upload a video")
audio_input = gr.Audio(type="file", label="Upload audio")
doc_input = gr.File(type="file", label="Upload a document")
voice_only_mode = gr.Checkbox(label="Enable Voice Only Mode")
output = gr.Output()
submit = gr.Button("Submit")
submit.click(
fn=main_interface,
inputs=[user_prompt, image_input, video_input, audio_input, doc_input, voice_only_mode],
outputs=output
)
demo.launch(inline=False)