import librosa import librosa.filters import numpy as np # import tensorflow as tf from scipy import signal from scipy.io import wavfile # from hparams import hparams as hp class HParams: def __init__(self, **kwargs): self.data = {} for key, value in kwargs.items(): self.data[key] = value def __getattr__(self, key): if key not in self.data: raise AttributeError("'HParams' object has no attribute %s" % key) return self.data[key] def set_hparam(self, key, value): self.data[key] = value # Default hyperparameters hp = HParams( num_mels=80, # Number of mel-spectrogram channels and local conditioning dimensionality # network rescale=True, # Whether to rescale audio prior to preprocessing rescaling_max=0.9, # Rescaling value # Use LWS (https://github.com/Jonathan-LeRoux/lws) for STFT and phase reconstruction # It"s preferred to set True to use with https://github.com/r9y9/wavenet_vocoder # Does not work if n_ffit is not multiple of hop_size!! use_lws=False, n_fft=800, # Extra window size is filled with 0 paddings to match this parameter hop_size=200, # For 16000Hz, 200 = 12.5 ms (0.0125 * sample_rate) win_size=800, # For 16000Hz, 800 = 50 ms (If None, win_size = n_fft) (0.05 * sample_rate) sample_rate=16000, # 16000Hz (corresponding to librispeech) (sox --i ) frame_shift_ms=None, # Can replace hop_size parameter. (Recommended: 12.5) # Mel and Linear spectrograms normalization/scaling and clipping signal_normalization=True, # Whether to normalize mel spectrograms to some predefined range (following below parameters) allow_clipping_in_normalization=True, # Only relevant if mel_normalization = True symmetric_mels=True, # Whether to scale the data to be symmetric around 0. (Also multiplies the output range by 2, # faster and cleaner convergence) max_abs_value=4., # max absolute value of data. If symmetric, data will be [-max, max] else [0, max] (Must not # be too big to avoid gradient explosion, # not too small for fast convergence) # Contribution by @begeekmyfriend # Spectrogram Pre-Emphasis (Lfilter: Reduce spectrogram noise and helps model certitude # levels. Also allows for better G&L phase reconstruction) preemphasize=True, # whether to apply filter preemphasis=0.97, # filter coefficient. # Limits min_level_db=-100, ref_level_db=20, fmin=55, # Set this to 55 if your speaker is male! if female, 95 should help taking off noise. (To # test depending on dataset. Pitch info: male~[65, 260], female~[100, 525]) fmax=7600, # To be increased/reduced depending on data. ###################### Our training parameters ################################# img_size=96, fps=25, batch_size=16, initial_learning_rate=1e-4, nepochs=200000000000000000, ### ctrl + c, stop whenever eval loss is consistently greater than train loss for ~10 epochs num_workers=16, checkpoint_interval=3000, eval_interval=3000, save_optimizer_state=True, syncnet_wt=0.0, # is initially zero, will be set automatically to 0.03 later. Leads to faster convergence. syncnet_batch_size=64, syncnet_lr=1e-4, syncnet_eval_interval=10000, syncnet_checkpoint_interval=10000, disc_wt=0.07, disc_initial_learning_rate=1e-4, ) def load_wav(path, sr): return librosa.core.load(path, sr=sr)[0] def save_wav(wav, path, sr): wav *= 32767 / max(0.01, np.max(np.abs(wav))) #proposed by @dsmiller wavfile.write(path, sr, wav.astype(np.int16)) def save_wavenet_wav(wav, path, sr): librosa.output.write_wav(path, wav, sr=sr) def preemphasis(wav, k, preemphasize=True): if preemphasize: return signal.lfilter([1, -k], [1], wav) return wav def inv_preemphasis(wav, k, inv_preemphasize=True): if inv_preemphasize: return signal.lfilter([1], [1, -k], wav) return wav def get_hop_size(): hop_size = hp.hop_size if hop_size is None: assert hp.frame_shift_ms is not None hop_size = int(hp.frame_shift_ms / 1000 * hp.sample_rate) return hop_size def linearspectrogram(wav): D = _stft(preemphasis(wav, hp.preemphasis, hp.preemphasize)) S = _amp_to_db(np.abs(D)) - hp.ref_level_db if hp.signal_normalization: return _normalize(S) return S def melspectrogram(wav): D = _stft(preemphasis(wav, hp.preemphasis, hp.preemphasize)) S = _amp_to_db(_linear_to_mel(np.abs(D))) - hp.ref_level_db if hp.signal_normalization: return _normalize(S) return S def _lws_processor(): import lws return lws.lws(hp.n_fft, get_hop_size(), fftsize=hp.win_size, mode="speech") def _stft(y): if hp.use_lws: return _lws_processor(hp).stft(y).T else: return librosa.stft(y=y, n_fft=hp.n_fft, hop_length=get_hop_size(), win_length=hp.win_size) ########################################################## #Those are only correct when using lws!!! (This was messing with Wavenet quality for a long time!) def num_frames(length, fsize, fshift): """Compute number of time frames of spectrogram """ pad = (fsize - fshift) if length % fshift == 0: M = (length + pad * 2 - fsize) // fshift + 1 else: M = (length + pad * 2 - fsize) // fshift + 2 return M def pad_lr(x, fsize, fshift): """Compute left and right padding """ M = num_frames(len(x), fsize, fshift) pad = (fsize - fshift) T = len(x) + 2 * pad r = (M - 1) * fshift + fsize - T return pad, pad + r ########################################################## #Librosa correct padding def librosa_pad_lr(x, fsize, fshift): return 0, (x.shape[0] // fshift + 1) * fshift - x.shape[0] # Conversions _mel_basis = None def _linear_to_mel(spectogram): global _mel_basis if _mel_basis is None: _mel_basis = _build_mel_basis() return np.dot(_mel_basis, spectogram) def _build_mel_basis(): assert hp.fmax <= hp.sample_rate // 2 # return librosa.filters.mel(hp.sample_rate, hp.n_fft, n_mels=hp.num_mels, # fmin=hp.fmin, fmax=hp.fmax) return librosa.filters.mel(sr=hp.sample_rate, n_fft=hp.n_fft) def _amp_to_db(x): min_level = np.exp(hp.min_level_db / 20 * np.log(10)) return 20 * np.log10(np.maximum(min_level, x)) def _db_to_amp(x): return np.power(10.0, (x) * 0.05) def _normalize(S): if hp.allow_clipping_in_normalization: if hp.symmetric_mels: return np.clip((2 * hp.max_abs_value) * ((S - hp.min_level_db) / (-hp.min_level_db)) - hp.max_abs_value, -hp.max_abs_value, hp.max_abs_value) else: return np.clip(hp.max_abs_value * ((S - hp.min_level_db) / (-hp.min_level_db)), 0, hp.max_abs_value) assert S.max() <= 0 and S.min() - hp.min_level_db >= 0 if hp.symmetric_mels: return (2 * hp.max_abs_value) * ((S - hp.min_level_db) / (-hp.min_level_db)) - hp.max_abs_value else: return hp.max_abs_value * ((S - hp.min_level_db) / (-hp.min_level_db)) def _denormalize(D): if hp.allow_clipping_in_normalization: if hp.symmetric_mels: return (((np.clip(D, -hp.max_abs_value, hp.max_abs_value) + hp.max_abs_value) * -hp.min_level_db / (2 * hp.max_abs_value)) + hp.min_level_db) else: return ((np.clip(D, 0, hp.max_abs_value) * -hp.min_level_db / hp.max_abs_value) + hp.min_level_db) if hp.symmetric_mels: return (((D + hp.max_abs_value) * -hp.min_level_db / (2 * hp.max_abs_value)) + hp.min_level_db) else: return ((D * -hp.min_level_db / hp.max_abs_value) + hp.min_level_db)