Spaces:
Running
Running
import librosa | |
import librosa.filters | |
import numpy as np | |
# import tensorflow as tf | |
from scipy import signal | |
from scipy.io import wavfile | |
# from hparams import hparams as hp | |
class HParams: | |
def __init__(self, **kwargs): | |
self.data = {} | |
for key, value in kwargs.items(): | |
self.data[key] = value | |
def __getattr__(self, key): | |
if key not in self.data: | |
raise AttributeError("'HParams' object has no attribute %s" % key) | |
return self.data[key] | |
def set_hparam(self, key, value): | |
self.data[key] = value | |
# Default hyperparameters | |
hp = HParams( | |
num_mels=80, # Number of mel-spectrogram channels and local conditioning dimensionality | |
# network | |
rescale=True, # Whether to rescale audio prior to preprocessing | |
rescaling_max=0.9, # Rescaling value | |
# Use LWS (https://github.com/Jonathan-LeRoux/lws) for STFT and phase reconstruction | |
# It"s preferred to set True to use with https://github.com/r9y9/wavenet_vocoder | |
# Does not work if n_ffit is not multiple of hop_size!! | |
use_lws=False, | |
n_fft=800, # Extra window size is filled with 0 paddings to match this parameter | |
hop_size=200, # For 16000Hz, 200 = 12.5 ms (0.0125 * sample_rate) | |
win_size=800, # For 16000Hz, 800 = 50 ms (If None, win_size = n_fft) (0.05 * sample_rate) | |
sample_rate=16000, # 16000Hz (corresponding to librispeech) (sox --i <filename>) | |
frame_shift_ms=None, # Can replace hop_size parameter. (Recommended: 12.5) | |
# Mel and Linear spectrograms normalization/scaling and clipping | |
signal_normalization=True, | |
# Whether to normalize mel spectrograms to some predefined range (following below parameters) | |
allow_clipping_in_normalization=True, # Only relevant if mel_normalization = True | |
symmetric_mels=True, | |
# Whether to scale the data to be symmetric around 0. (Also multiplies the output range by 2, | |
# faster and cleaner convergence) | |
max_abs_value=4., | |
# max absolute value of data. If symmetric, data will be [-max, max] else [0, max] (Must not | |
# be too big to avoid gradient explosion, | |
# not too small for fast convergence) | |
# Contribution by @begeekmyfriend | |
# Spectrogram Pre-Emphasis (Lfilter: Reduce spectrogram noise and helps model certitude | |
# levels. Also allows for better G&L phase reconstruction) | |
preemphasize=True, # whether to apply filter | |
preemphasis=0.97, # filter coefficient. | |
# Limits | |
min_level_db=-100, | |
ref_level_db=20, | |
fmin=55, | |
# Set this to 55 if your speaker is male! if female, 95 should help taking off noise. (To | |
# test depending on dataset. Pitch info: male~[65, 260], female~[100, 525]) | |
fmax=7600, # To be increased/reduced depending on data. | |
###################### Our training parameters ################################# | |
img_size=96, | |
fps=25, | |
batch_size=16, | |
initial_learning_rate=1e-4, | |
nepochs=200000000000000000, ### ctrl + c, stop whenever eval loss is consistently greater than train loss for ~10 epochs | |
num_workers=16, | |
checkpoint_interval=3000, | |
eval_interval=3000, | |
save_optimizer_state=True, | |
syncnet_wt=0.0, # is initially zero, will be set automatically to 0.03 later. Leads to faster convergence. | |
syncnet_batch_size=64, | |
syncnet_lr=1e-4, | |
syncnet_eval_interval=10000, | |
syncnet_checkpoint_interval=10000, | |
disc_wt=0.07, | |
disc_initial_learning_rate=1e-4, | |
) | |
def load_wav(path, sr): | |
return librosa.core.load(path, sr=sr)[0] | |
def save_wav(wav, path, sr): | |
wav *= 32767 / max(0.01, np.max(np.abs(wav))) | |
#proposed by @dsmiller | |
wavfile.write(path, sr, wav.astype(np.int16)) | |
def save_wavenet_wav(wav, path, sr): | |
librosa.output.write_wav(path, wav, sr=sr) | |
def preemphasis(wav, k, preemphasize=True): | |
if preemphasize: | |
return signal.lfilter([1, -k], [1], wav) | |
return wav | |
def inv_preemphasis(wav, k, inv_preemphasize=True): | |
if inv_preemphasize: | |
return signal.lfilter([1], [1, -k], wav) | |
return wav | |
def get_hop_size(): | |
hop_size = hp.hop_size | |
if hop_size is None: | |
assert hp.frame_shift_ms is not None | |
hop_size = int(hp.frame_shift_ms / 1000 * hp.sample_rate) | |
return hop_size | |
def linearspectrogram(wav): | |
D = _stft(preemphasis(wav, hp.preemphasis, hp.preemphasize)) | |
S = _amp_to_db(np.abs(D)) - hp.ref_level_db | |
if hp.signal_normalization: | |
return _normalize(S) | |
return S | |
def melspectrogram(wav): | |
D = _stft(preemphasis(wav, hp.preemphasis, hp.preemphasize)) | |
S = _amp_to_db(_linear_to_mel(np.abs(D))) - hp.ref_level_db | |
if hp.signal_normalization: | |
return _normalize(S) | |
return S | |
def _lws_processor(): | |
import lws | |
return lws.lws(hp.n_fft, get_hop_size(), fftsize=hp.win_size, mode="speech") | |
def _stft(y): | |
if hp.use_lws: | |
return _lws_processor(hp).stft(y).T | |
else: | |
return librosa.stft(y=y, n_fft=hp.n_fft, hop_length=get_hop_size(), win_length=hp.win_size) | |
########################################################## | |
#Those are only correct when using lws!!! (This was messing with Wavenet quality for a long time!) | |
def num_frames(length, fsize, fshift): | |
"""Compute number of time frames of spectrogram | |
""" | |
pad = (fsize - fshift) | |
if length % fshift == 0: | |
M = (length + pad * 2 - fsize) // fshift + 1 | |
else: | |
M = (length + pad * 2 - fsize) // fshift + 2 | |
return M | |
def pad_lr(x, fsize, fshift): | |
"""Compute left and right padding | |
""" | |
M = num_frames(len(x), fsize, fshift) | |
pad = (fsize - fshift) | |
T = len(x) + 2 * pad | |
r = (M - 1) * fshift + fsize - T | |
return pad, pad + r | |
########################################################## | |
#Librosa correct padding | |
def librosa_pad_lr(x, fsize, fshift): | |
return 0, (x.shape[0] // fshift + 1) * fshift - x.shape[0] | |
# Conversions | |
_mel_basis = None | |
def _linear_to_mel(spectogram): | |
global _mel_basis | |
if _mel_basis is None: | |
_mel_basis = _build_mel_basis() | |
return np.dot(_mel_basis, spectogram) | |
def _build_mel_basis(): | |
assert hp.fmax <= hp.sample_rate // 2 | |
# return librosa.filters.mel(hp.sample_rate, hp.n_fft, n_mels=hp.num_mels, | |
# fmin=hp.fmin, fmax=hp.fmax) | |
return librosa.filters.mel(sr=hp.sample_rate, n_fft=hp.n_fft) | |
def _amp_to_db(x): | |
min_level = np.exp(hp.min_level_db / 20 * np.log(10)) | |
return 20 * np.log10(np.maximum(min_level, x)) | |
def _db_to_amp(x): | |
return np.power(10.0, (x) * 0.05) | |
def _normalize(S): | |
if hp.allow_clipping_in_normalization: | |
if hp.symmetric_mels: | |
return np.clip((2 * hp.max_abs_value) * ((S - hp.min_level_db) / (-hp.min_level_db)) - hp.max_abs_value, | |
-hp.max_abs_value, hp.max_abs_value) | |
else: | |
return np.clip(hp.max_abs_value * ((S - hp.min_level_db) / (-hp.min_level_db)), 0, hp.max_abs_value) | |
assert S.max() <= 0 and S.min() - hp.min_level_db >= 0 | |
if hp.symmetric_mels: | |
return (2 * hp.max_abs_value) * ((S - hp.min_level_db) / (-hp.min_level_db)) - hp.max_abs_value | |
else: | |
return hp.max_abs_value * ((S - hp.min_level_db) / (-hp.min_level_db)) | |
def _denormalize(D): | |
if hp.allow_clipping_in_normalization: | |
if hp.symmetric_mels: | |
return (((np.clip(D, -hp.max_abs_value, | |
hp.max_abs_value) + hp.max_abs_value) * -hp.min_level_db / (2 * hp.max_abs_value)) | |
+ hp.min_level_db) | |
else: | |
return ((np.clip(D, 0, hp.max_abs_value) * -hp.min_level_db / hp.max_abs_value) + hp.min_level_db) | |
if hp.symmetric_mels: | |
return (((D + hp.max_abs_value) * -hp.min_level_db / (2 * hp.max_abs_value)) + hp.min_level_db) | |
else: | |
return ((D * -hp.min_level_db / hp.max_abs_value) + hp.min_level_db) | |