VPCSinfo's picture
[FEATURE] enhance YouTube transcript summarization with dynamic chunking and API key input
b984651
raw
history blame
4.45 kB
from smolagents.tools import Tool
from typing import Optional
import os
from transformers import pipeline
import requests
import io
from PIL import Image
#from dotenv import load_dotenv
#load_dotenv()
class TranscriptSummarizer(Tool):
description = "Summarizes a transcript and generates blog content using the transformers library and Hugging Face API for image generation."
name = "transcript_summarizer"
inputs = {'transcript': {'type': 'string', 'description': 'The transcript to summarize.'}}
output_type = "string"
def __init__(self, *args, hf_api_key: str = None, **kwargs):
super().__init__(*args, **kwargs)
self.summarizer = pipeline("summarization", model="google/pegasus-xsum")
self.api_url = "https://api-inference.huggingface.co/models/ZB-Tech/Text-to-Image"
self.hf_api_key = hf_api_key
self.headers = {"Authorization": f"Bearer {self.hf_api_key}"}
def query(self, payload):
response = requests.post(self.api_url, headers=self.headers, json=payload)
return response.content
def forward(self, transcript: str) -> str:
try:
if not self.hf_api_key:
return "Hugging Face API key is required. Please provide it in the input field."
transcript_length = len(transcript)
def get_summary_lengths(length):
# set the short maths formula
max_length = int(length * 0.8)
min_length = int(length * 0.2)
return max_length, min_length
# Split the transcript into chunks of 500 characters make it dynamic according to the length of the transcript
if transcript_length < 500:
return "Transcript is too short to summarize."
chunk_size = 500
transcript_chunks = [transcript[i:i+chunk_size] for i in range(0, len(transcript), chunk_size)]
# Summarize each chunk of the transcript
summaries = []
for chunk in transcript_chunks:
max_length, min_length = get_summary_lengths(len(chunk))
summary = self.summarizer(chunk, max_length=max_length, min_length=min_length, do_sample=False)[0]['summary_text']
summaries.append(summary)
# Concatenate the summaries
full_summary = "\n".join(summaries)
key_entities = full_summary.split()[:15] # Extract first 3 words as key entities
image_prompt = f"Generate an image related to: {' '.join(key_entities)}, cartoon style"
image_bytes = self.query({"inputs": image_prompt})
image = Image.open(io.BytesIO(image_bytes))
image_folder = "Image"
if not os.path.exists(image_folder):
os.makedirs(image_folder)
image_url = os.path.join(image_folder, "image.jpg") # Specify the folder path
image.save(image_url) # Save the image to a file
return f"{full_summary}\n\nImage URL: {image_url}" # Return the file path
except Exception as e:
return f"An unexpected error occurred: {str(e)}"
class YouTubeTranscriptExtractor(Tool):
description = "Extracts the transcript from a YouTube video."
name = "youtube_transcript_extractor"
inputs = {'video_url': {'type': 'string', 'description': 'The URL of the YouTube video.'}}
output_type = "string"
def forward(self, video_url: str) -> str:
try:
from pytubefix import YouTube
# Create a YouTube object
yt = YouTube(video_url)
lang='en'
# Get the video transcript
if lang in yt.captions:
transcript = yt.captions['en'].generate_srt_captions()
else:
transcript = yt.captions.all()[0].generate_srt_captions()
lang = yt.captions.all()[0].code
# Clean up the transcript by removing timestamps and line numbers
cleaned_transcript = ""
for line in transcript.splitlines():
if not line.strip().isdigit() and "-->" not in line:
cleaned_transcript += line + "\n"
print("transcript : ", cleaned_transcript)
return cleaned_transcript
except Exception as e:
return f"An unexpected error occurred: {str(e)}"
def __init__(self, *args, **kwargs):
self.is_initialized = False