VPCSinfo's picture
[ADD] added fixes for tool model.
74d45f5
raw
history blame
3.81 kB
from smolagents.tools import Tool
from typing import Optional
import os
from transformers import pipeline
import requests
import io
from PIL import Image
from dotenv import load_dotenv
load_dotenv()
class TranscriptSummarizer(Tool):
description = "Summarizes a transcript and generates blog content using the transformers library and Hugging Face API for image generation."
name = "transcript_summarizer"
inputs = {'transcript': {'type': 'string', 'description': 'The transcript to summarize.'}}
output_type = "string"
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.summarizer = pipeline("summarization", model="google/pegasus-xsum")
self.api_url = "https://api-inference.huggingface.co/models/ZB-Tech/Text-to-Image"
self.headers = {"Authorization": f"Bearer {os.getenv('HF_API_KEY')}"}
def query(self, payload):
response = requests.post(self.api_url, headers=self.headers, json=payload)
return response.content
def forward(self, transcript: str) -> str:
try:
transcript_length = len(transcript)
def get_summary_lengths(length):
if length <= 1000:
max_length = 300
min_length = 100
elif length <= 3000:
max_length = 750
min_length = 250
else:
max_length = 1500
min_length = 500
return max_length, min_length
max_length, min_length = get_summary_lengths(transcript_length)
summary = self.summarizer(transcript, max_length=max_length, min_length=min_length, do_sample=False)[0]['summary_text']
key_entities = summary.split()[:3] # Extract first 3 words as key entities
image_prompt = f"Generate an image related to: {' '.join(key_entities)}, cartoon style"
image_bytes = self.query({"inputs": image_prompt})
image = Image.open(io.BytesIO(image_bytes))
image_folder = "Image"
if not os.path.exists(image_folder):
os.makedirs(image_folder)
image_url = os.path.join(image_folder, "image.jpg") # Specify the folder path
image.save(image_url) # Save the image to a file
return f"{summary}\n\nImage URL: {image_url}" # Return the file path
except Exception as e:
return f"An unexpected error occurred: {str(e)}"
class YouTubeTranscriptExtractor(Tool):
description = "Extracts the transcript from a YouTube video."
name = "youtube_transcript_extractor"
inputs = {'video_url': {'type': 'string', 'description': 'The URL of the YouTube video.'}}
output_type = "string"
def forward(self, video_url: str) -> str:
try:
from pytubefix import YouTube
# Create a YouTube object
yt = YouTube(video_url)
lang='en'
# Get the video transcript
if lang in yt.captions:
transcript = yt.captions['en'].generate_srt_captions()
else:
transcript = yt.captions.all()[0].generate_srt_captions()
lang = yt.captions.all()[0].code
# Clean up the transcript by removing timestamps and line numbers
cleaned_transcript = ""
for line in transcript.splitlines():
if not line.strip().isdigit() and "-->" not in line:
cleaned_transcript += line + "\n"
print("transcript : ", cleaned_transcript)
return cleaned_transcript
except Exception as e:
return f"An unexpected error occurred: {str(e)}"
def __init__(self, *args, **kwargs):
self.is_initialized = False