import math from abc import ABC, abstractmethod import torch import torch.nn.functional as F from vita.constants import AUDIO_TOKEN_INDEX, IGNORE_INDEX, IMAGE_TOKEN_INDEX from .multimodal_encoder.builder import build_audio_encoder, build_vision_tower from .multimodal_projector.builder import build_vision_projector import numpy as np class VITAMetaModel: def __init__(self, config): super(VITAMetaModel, self).__init__(config) if hasattr(config, "mm_vision_tower"): self.vision_tower = build_vision_tower( config, delay_load=False#not getattr(config, "continuous_training", False) ) if getattr(config, "continuous_training", False): config.continuous_training = False self.mm_projector = build_vision_projector(config) if hasattr(config, "mm_audio_encoder"): self.audio_encoder = build_audio_encoder(config) def get_vision_tower(self): vision_tower = getattr(self, "vision_tower", None) if type(vision_tower) is list: vision_tower = vision_tower[0] return vision_tower def get_audio_encoder(self): audio_encoder = getattr(self, "audio_encoder", None) return audio_encoder def initialize_vision_modules(self, model_args): vision_tower = model_args.vision_tower pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter self.config.mm_vision_tower = vision_tower if self.get_vision_tower() is None: vision_tower = build_vision_tower(model_args) self.vision_tower = vision_tower else: vision_tower = self.vision_tower #vision_tower.load_model() self.config.use_mm_proj = True self.config.mm_projector_type = getattr(model_args, "mm_projector_type") self.config.mm_hidden_size = vision_tower.hidden_size if getattr(self, "mm_projector", None) is None: self.mm_projector = build_vision_projector(self.config) else: # In case it is frozen by LoRA for p in self.mm_projector.parameters(): p.requires_grad = True if pretrain_mm_mlp_adapter is not None: mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location="cpu") def get_w(weights, keyword): return {k.split(keyword + ".")[1]: v for k, v in weights.items() if keyword in k} self.mm_projector.load_state_dict(get_w(mm_projector_weights, "mm_projector")) def initialize_audio_modules(self, model_args): audio_encoder = model_args.audio_encoder pretrain_audio_mlp_adapter = model_args.pretrain_audio_mlp_adapter setattr(self.config, "mm_audio_encoder", audio_encoder) audio_encoder = build_audio_encoder(self.config) self.audio_encoder = audio_encoder load_audio_ckpt_from_mllm = True if load_audio_ckpt_from_mllm: from safetensors.torch import load_file import os audio_weights = {} for file_name in os.listdir(model_args.model_name_or_path): if file_name.endswith('safetensors'): audio_weights.update( {k[20:]: v for k, v in load_file(os.path.join(model_args.model_name_or_path, file_name)).items() if k.startswith('model.audio_encoder.')}) self.audio_encoder.load_state_dict(audio_weights, strict=True) #load_audio_ckpt = True #if self.get_audio_encoder() is None or load_audio_ckpt or model_args.audio_prompt_finetune: # audio_encoder = build_audio_encoder(self.config) # self.audio_encoder = audio_encoder #load_audio_prompt_weight = False #True #if load_audio_prompt_weight: # from safetensors.torch import load_file # import os # audio_weights = {} # for file_name in os.listdir(model_args.model_name_or_path): # if file_name.endswith('safetensors'): # audio_weights.update( # {k[38:]: v for k, v in load_file(os.path.join(model_args.model_name_or_path, file_name)).items() if # k.startswith('model.audio_encoder.prompt_embeddings')}) # self.audio_encoder.prompt_embeddings.load_state_dict(audio_weights, strict=True) #checkpoint = torch.load(model_args.audio_encoder + "/final.pt", map_location="cpu") #model_dict = self.audio_encoder.state_dict() #for key in model_dict.keys(): # if key in checkpoint.keys(): # if model_dict[key].shape == checkpoint[key].shape: # model_dict[key] = checkpoint[key] # else: # print( # "Key {} has different shape, {} VS {}".format( # key, model_dict[key].shape, checkpoint[key].shape # ) # ) # else: # print("Key {} has not in resume model".format(key)) #self.audio_encoder.load_state_dict(model_dict) if pretrain_audio_mlp_adapter is not None: audio_projector_weights = torch.load(pretrain_audio_mlp_adapter, map_location="cpu") def get_w(weights, keyword): return {k.split(keyword + ".")[1]: v for k, v in weights.items() if keyword in k} self.audio_encoder.adpter.load_state_dict(get_w(audio_projector_weights, "audio_encoder.adpter")) class VITAMetaForCausalLM(ABC): @abstractmethod def get_model(self): pass def get_vision_tower(self): return self.get_model().get_vision_tower() def get_audio_encoder(self): return self.get_model().get_audio_encoder() def pool_feats(self, x, out_size): ndim = x.ndim if ndim == 2: x = x.unsqueeze(0) b, num_tokens, c = x.shape h = int(math.sqrt(num_tokens)) x = x.permute(0, 2, 1).reshape(b, -1, h, h) x = F.interpolate(x, size=out_size, mode='bilinear', align_corners=False) num_tokens = x.shape[2] * x.shape[3] # Recalculate the number of tokens after pooling x = x.reshape(b, c, num_tokens).permute(0, 2, 1) if ndim == 2: x = x.squeeze(0) return x def encode_images(self, images): image_features = self.get_model().get_vision_tower()(images) #image_features = self.pool_feats(image_features) image_features = self.get_model().mm_projector(image_features) return image_features def encode_images_frameCat(self, images): image_features = self.get_model().get_vision_tower()(images) assert len(image_features) % 5 == 0 concatenated_features = [] for i in range(0, len(image_features), 5): tensors_to_concat = [image_features[j] for j in range(i, i + 5)] concatenated_tensor = torch.cat(tensors_to_concat, dim=-1) concatenated_features.append(concatenated_tensor) concatenated_features = torch.stack(concatenated_features) image_features = concatenated_features image_features = self.get_model().mm_projector(image_features) return image_features def slow_fast_pooling0(self, temp_img_feats): num_frame = len(temp_img_feats) if num_frame <= 30: slow_token_num = max([e for e in [256, 225, 196, 169] if e <= 5200/num_frame]) fast_token_num = slow_token_num elif num_frame <= 45: slow_token_num = 169 fast_token_num = 81 elif num_frame <= 64: slow_token_num = 169 fast_token_num = 49 else: raise ValueError("The number of frames is too large!") if num_frame <= 30: num_slow = num_frame else: num_slow = int((5200 - fast_token_num * num_frame) / (slow_token_num - fast_token_num)) num_fast = num_frame - num_slow slow_index = list(np.linspace(0, num_frame, num=num_slow, dtype=int)) new_img_feats = [] for i, feat in enumerate(temp_img_feats): if i in slow_index: sqrt_len = int(math.sqrt(slow_token_num)) else: sqrt_len = int(math.sqrt(fast_token_num)) if sqrt_len != 16: feat = self.pool_feats(feat, out_size=(sqrt_len, sqrt_len)) new_img_feats.append(feat) return new_img_feats def slow_fast_pooling1(self, temp_img_feats): num_frame = len(temp_img_feats) if num_frame <= 28: slow_token_num = max([e for e in [256, 225, 196, 169, 144] if e <= 4096/num_frame]) fast_token_num = slow_token_num elif num_frame <= 40: slow_token_num = 144 fast_token_num = 81 elif num_frame <= 64: slow_token_num = 144 fast_token_num = 49 else: raise ValueError("The number of frames is too large!") if num_frame <= 28: num_slow = num_frame else: num_slow = int((4096 - fast_token_num * num_frame) / (slow_token_num - fast_token_num)) num_fast = num_frame - num_slow slow_index = list(np.linspace(0, num_frame, num=num_slow, dtype=int)) new_img_feats = [] for i, feat in enumerate(temp_img_feats): if i in slow_index: sqrt_len = int(math.sqrt(slow_token_num)) else: sqrt_len = int(math.sqrt(fast_token_num)) if sqrt_len != 16: feat = self.pool_feats(feat, out_size=(sqrt_len, sqrt_len)) new_img_feats.append(feat) return new_img_feats def slow_fast_pooling(self, temp_img_feats): num_frame = len(temp_img_feats) slow_token_num = 144 fast_token_num = 49 slow_index = list(range(0, num_frame, 4)) new_img_feats = [] for i, feat in enumerate(temp_img_feats): if i in slow_index: sqrt_len = int(math.sqrt(slow_token_num)) else: sqrt_len = int(math.sqrt(fast_token_num)) if sqrt_len != 16: feat = self.pool_feats(feat, out_size=(sqrt_len, sqrt_len)) new_img_feats.append(feat) return new_img_feats def slow_fast_pooling3(self, temp_img_feats): num_frame = len(temp_img_feats) slow_token_num = 144 fast_token_num = 36 slow_index = list(range(0, num_frame, 16)) new_img_feats = [] for i, feat in enumerate(temp_img_feats): if i in slow_index: sqrt_len = int(math.sqrt(slow_token_num)) else: sqrt_len = int(math.sqrt(fast_token_num)) if sqrt_len != 16: feat = self.pool_feats(feat, out_size=(sqrt_len, sqrt_len)) new_img_feats.append(feat) return new_img_feats def slow_fast(self, image_features, sf_masks): new_image_features = [] temp_img_feats = [] # 初始化 temp_img_feats 在循环外 for i, img_feat in enumerate(image_features): if i == 0 or sf_masks[i] != sf_masks[i-1]: if temp_img_feats: # 如果 temp_img_feats 不为空,则添加到 new_image_features if sf_masks[i-1] > 0: temp_img_feats = self.slow_fast_pooling(temp_img_feats) new_image_features.append(temp_img_feats) temp_img_feats = [img_feat] # 重新初始化 temp_img_feats else: temp_img_feats.append(img_feat) if temp_img_feats: # 处理最后一个子列表 if sf_masks[-1] > 0: temp_img_feats = self.slow_fast_pooling(temp_img_feats) new_image_features.append(temp_img_feats) output_features = [] for e in new_image_features: output_features += e return output_features def prepare_inputs_labels_for_multimodal( self, input_ids, position_ids, attention_mask, past_key_values, labels, images, audios, sf_masks, shared_v_pid_stride=None ): vision_tower = self.get_vision_tower() if vision_tower is None or images is None or input_ids.shape[1] == 1: if ( past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[1] == 1 ): target_shape = past_key_values[-1][-1].shape[-2] + 1 attention_mask = torch.cat( ( attention_mask, torch.ones( (attention_mask.shape[0], target_shape - attention_mask.shape[1]), dtype=attention_mask.dtype, device=attention_mask.device, ), ), dim=1, ) position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1 return input_ids, position_ids, attention_mask, past_key_values, None, labels if type(images) is list or images.ndim == 5: concat_images = torch.cat([image for image in images], dim=0) image_features = self.encode_images(concat_images) split_sizes = [image.shape[0] for image in images] image_features = torch.split(image_features, split_sizes, dim=0) image_features = [x.flatten(0, 1).to(self.device) for x in image_features] else: image_features = self.encode_images(images).to(self.device) image_features = [e for e in image_features] if sf_masks is not None: assert len(image_features) == len(sf_masks) image_features = self.slow_fast(image_features, sf_masks) audio_encoder = self.get_audio_encoder() if audios is not None: audio_features = audio_encoder(audios["audios"], audios["lengths"]) state_labels = audios.get("state_labels", None) lengths_for_llm = audios["lengths_for_llm"] if state_labels is not None: assert len(audio_features["inputs_embeds"]) == len(state_labels) == len(lengths_for_llm) else: audio_features, state_labels, lengths_for_llm = None, None, None # Let's just add dummy tensors if they do not exist, # it is a headache to deal with None all the time. # But it is not ideal, and if you have a better idea, # please open an issue / submit a PR, thanks. _labels = labels _position_ids = position_ids _attention_mask = attention_mask if attention_mask is None: attention_mask = torch.ones_like(input_ids, dtype=torch.bool) else: attention_mask = attention_mask.bool() if position_ids is None: position_ids = torch.arange( 0, input_ids.shape[1], dtype=torch.long, device=input_ids.device ) if labels is None: labels = torch.full_like(input_ids, IGNORE_INDEX) # remove the padding using attention_mask -- TODO: double check input_ids = [ cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask) ] labels = [ cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask) ] new_input_embeds = [] new_labels = [] v_start_end = [] cur_image_idx = 0 cur_audio_idx = 0 assert ( sum([(cur == IMAGE_TOKEN_INDEX).sum() for cur in input_ids]) + sum([(IMAGE_TOKEN_INDEX not in cur) for cur in input_ids]) == len(image_features) ), input_ids assert ( sum([(cur == AUDIO_TOKEN_INDEX).sum() for cur in input_ids]) + sum([(AUDIO_TOKEN_INDEX not in cur) for cur in input_ids]) == audio_features["inputs_embeds"].shape[0] ), input_ids for batch_idx, cur_input_ids in enumerate(input_ids): num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum() num_audio_frames = (cur_input_ids == AUDIO_TOKEN_INDEX).sum() if num_images == 0 and num_audio_frames == 0: cur_image_features = image_features[cur_image_idx] cur_audio_features = audio_features["inputs_embeds"][cur_audio_idx] cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids) cur_input_embeds = torch.cat( [cur_input_embeds_1, cur_image_features[0:0], cur_audio_features[0:0]], dim=0 ) new_input_embeds.append(cur_input_embeds) new_labels.append(labels[batch_idx]) cur_image_idx += 1 cur_audio_idx += 1 continue image_audio_token_indices = ( [-1] + torch.where( (cur_input_ids == IMAGE_TOKEN_INDEX) | (cur_input_ids == AUDIO_TOKEN_INDEX) )[0].tolist() + [cur_input_ids.shape[0]] ) cur_input_ids_noim_noau = [] cur_labels = labels[batch_idx] cur_labels_noim_noau = [] for i in range(len(image_audio_token_indices) - 1): cur_input_ids_noim_noau.append( cur_input_ids[ image_audio_token_indices[i] + 1 : image_audio_token_indices[i + 1] ] ) cur_labels_noim_noau.append( cur_labels[image_audio_token_indices[i] + 1 : image_audio_token_indices[i + 1]] ) split_sizes = [x.shape[0] for x in cur_labels_noim_noau] cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim_noau)) cur_input_embeds_no_im_no_au = torch.split(cur_input_embeds, split_sizes, dim=0) cur_new_input_embeds = [] cur_new_labels = [] cur_v_start_end = [] for i in range(num_images + num_audio_frames + 1): cur_new_input_embeds.append(cur_input_embeds_no_im_no_au[i]) cur_new_labels.append(cur_labels_noim_noau[i]) if i < num_images + num_audio_frames: if cur_input_ids[image_audio_token_indices[i + 1]] == IMAGE_TOKEN_INDEX: cur_image_features = image_features[cur_image_idx] cur_image_idx += 1 cur_new_input_embeds.append(cur_image_features) cur_new_labels.append( torch.full( (cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype, ) ) if shared_v_pid_stride: start = sum([x.shape[0] for x in cur_new_labels[:-1]]) end = start + cur_new_labels[-1].shape[0] cur_v_start_end.append((start, end)) elif cur_input_ids[image_audio_token_indices[i + 1]] == AUDIO_TOKEN_INDEX: cur_lengths_for_llm = lengths_for_llm[cur_audio_idx] cur_audio_features = audio_features["inputs_embeds"][cur_audio_idx] if getattr(self.config, "audio_prompt_num", None):#self.config.audio_prompt_num: cur_lengths_for_llm = cur_lengths_for_llm + self.config.audio_prompt_num cur_audio_features = cur_audio_features[:cur_lengths_for_llm] if state_labels is not None: cur_state_label = state_labels[cur_audio_idx] cur_audio_idx += 1 cur_new_input_embeds.append(cur_audio_features) cur_new_labels.append( torch.full( (cur_audio_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype, ) ) if state_labels is not None: cur_new_labels[-1][-1] = cur_state_label else: raise ValueError if num_images != 0 and num_audio_frames == 0: cur_audio_features = audio_features["inputs_embeds"][cur_audio_idx] cur_audio_idx += 1 cur_new_input_embeds.append(cur_audio_features[0:0]) elif num_images == 0 and num_audio_frames != 0: cur_image_features = image_features[cur_image_idx] cur_image_idx += 1 cur_new_input_embeds.append(cur_image_features[0:0]) cur_new_input_embeds = torch.cat(cur_new_input_embeds) cur_new_labels = torch.cat(cur_new_labels) new_input_embeds.append(cur_new_input_embeds) new_labels.append(cur_new_labels) if shared_v_pid_stride: cur_v_start_end = merge_consecutive_tuples(cur_v_start_end) v_start_end.append(cur_v_start_end) assert cur_image_idx == len(image_features) assert cur_audio_idx == audio_features["inputs_embeds"].shape[0] if state_labels is not None: assert cur_audio_idx == len(state_labels) if state_labels is not None: assert ( sum([(cur == AUDIO_TOKEN_INDEX).sum() for cur in input_ids]) == sum([(cur == -101).sum() for cur in new_labels]) + sum([(cur == -102).sum() for cur in new_labels]) ), (input_ids, sum([(cur == AUDIO_TOKEN_INDEX).sum() for cur in input_ids]), sum([(cur == -101).sum() for cur in new_labels]), sum([(cur == -102).sum() for cur in new_labels]), new_labels.shape) # Truncate sequences to max length as image embeddings can make the sequence longer tokenizer_model_max_length = getattr(self.config, "tokenizer_model_max_length", None) if tokenizer_model_max_length is not None: new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds] new_labels = [x[:tokenizer_model_max_length] for x in new_labels] # Combine them max_len = max(x.shape[0] for x in new_input_embeds) batch_size = len(new_input_embeds) new_input_embeds_padded = [] new_labels_padded = torch.full( (batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device, ) attention_mask = torch.zeros( (batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device ) position_ids = torch.zeros( (batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device ) for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)): cur_len = cur_new_embed.shape[0] if getattr(self.config, "tokenizer_padding_side", "right") == "left": new_input_embeds_padded.append( torch.cat( ( torch.zeros( (max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device, ), cur_new_embed, ), dim=0, ) ) if cur_len > 0: new_labels_padded[i, -cur_len:] = cur_new_labels attention_mask[i, -cur_len:] = True position_ids[i, -cur_len:] = torch.arange( 0, cur_len, dtype=position_ids.dtype, device=position_ids.device ) else: new_input_embeds_padded.append( torch.cat( ( cur_new_embed, torch.zeros( (max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device, ), ), dim=0, ) ) if cur_len > 0: new_labels_padded[i, :cur_len] = cur_new_labels attention_mask[i, :cur_len] = True if shared_v_pid_stride is None: position_ids[i, :cur_len] = torch.arange( 0, cur_len, dtype=position_ids.dtype, device=position_ids.device ) else: cur_v_start_end = v_start_end[i] cur_shared_position_ids = make_shared_position_ids(cur_v_start_end, cur_len, shared_v_pid_stride) position_ids[i, :cur_len] = cur_shared_position_ids new_input_embeds = torch.stack(new_input_embeds_padded, dim=0) if _labels is None: new_labels = None else: new_labels = new_labels_padded if _attention_mask is None: attention_mask = None else: attention_mask = attention_mask.to(dtype=_attention_mask.dtype) if _position_ids is None and shared_v_pid_stride is None: position_ids = None return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels def merge_consecutive_tuples(tuples_list): if not tuples_list: return [] # 首先对列表按照起点索引进行排序 sorted_tuples = sorted(tuples_list, key=lambda x: x[0]) # 初始化合并后的列表 merged_tuples = [sorted_tuples[0]] for current_start, current_end in sorted_tuples[1:]: last_merged_start, last_merged_end = merged_tuples[-1] if current_start <= last_merged_end: # 如果当前元组的起点小于等于上一个合并元组的终点 # 合并这两个元组 new_start, new_end = merged_tuples[-1][0], max(last_merged_end, current_end) merged_tuples[-1] = (new_start, new_end) else: # 如果当前元组不连续,直接添加到合并后的列表中 merged_tuples.append((current_start, current_end)) return merged_tuples def make_shared_position_ids(cur_v_start_end, cur_len, shared_v_pid_stride): position_ids = torch.tensor([1.0] * cur_len) for start, end in cur_v_start_end: position_ids[start:end] = 1/shared_v_pid_stride v_mod = (end - start) % shared_v_pid_stride if v_mod != 0: position_ids[end-v_mod:end] = 1 / v_mod position_ids = position_ids.cumsum(dim=0) position_ids = torch.ceil(position_ids).long() - 1 return position_ids