import os import warnings import torch from transformers import AutoConfig, AutoTokenizer, BitsAndBytesConfig, logging from vita.constants import GLOBAL_WEIGHTS_PATH from vita.model import * logging.set_verbosity_error() warnings.filterwarnings("ignore") def load_pretrained_model( model_path, model_base, model_name, model_type, load_8bit=False, load_4bit=False, device_map="auto", device="cuda", **kwargs, ): if model_type not in {"mixtral-8x7b", "nemo", "qwen2p5_instruct", "qwen2p5_fo_instruct"}: raise ValueError(f"Unknown Model Type {model_type}") kwargs = {"device_map": device_map, **kwargs} if device != "cuda": kwargs["device_map"] = {"": device} if load_8bit: kwargs["load_in_8bit"] = True elif load_4bit: kwargs["load_in_4bit"] = True kwargs["quantization_config"] = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", ) else: kwargs["torch_dtype"] = torch.float16 # Load VITA model if "lora" in model_name.lower() and model_base is None: warnings.warn( "There is `lora` in model name but no `model_base` is provided. If you are loading a LoRA model, please provide the `model_base` argument." ) if "lora" in model_name.lower() and model_base is not None: lora_cfg_pretrained = AutoConfig.from_pretrained(model_path) print("Loading VITA from base model...") if model_type == "mixtral-8x7b": tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True) model = VITAMixtralForCausalLM.from_pretrained( model_path, low_cpu_mem_usage=True, **kwargs ) token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features if model.lm_head.weight.shape[0] != token_num: model.lm_head.weight = torch.nn.Parameter( torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype) ) model.model.embed_tokens.weight = torch.nn.Parameter( torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype) ) print("Loading additional VITA weights...") if os.path.exists(os.path.join(model_path, "non_lora_trainables.bin")): non_lora_trainables = torch.load( os.path.join(model_path, "non_lora_trainables.bin"), map_location="cpu" ) else: # this is probably from HF Hub from huggingface_hub import hf_hub_download def load_from_hf(repo_id, filename, subfolder=None): cache_file = hf_hub_download( repo_id=repo_id, filename=filename, subfolder=subfolder ) return torch.load(cache_file, map_location="cpu") non_lora_trainables = load_from_hf(model_path, "non_lora_trainables.bin") non_lora_trainables = { (k[11:] if k.startswith("base_model.") else k): v for k, v in non_lora_trainables.items() } if any(k.startswith("model.model.") for k in non_lora_trainables): non_lora_trainables = { (k[6:] if k.startswith("model.") else k): v for k, v in non_lora_trainables.items() } model.load_state_dict(non_lora_trainables, strict=False) from peft import PeftModel print("Loading LoRA weights...") model = PeftModel.from_pretrained(model, model_path) print("Merging LoRA weights...") model = model.merge_and_unload() print("Model is loaded...") elif model_base is not None: # this may be mm projector only print("Loading VITA from base model...") cfg_pretrained = AutoConfig.from_pretrained(model_path) if model_type == "mixtral-8x7b": tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=True) model = VITAMixtralForCausalLM.from_pretrained( model_base, low_cpu_mem_usage=True, **kwargs ) # load vision encoder from types import SimpleNamespace model_args = { "vision_tower": f"{GLOBAL_WEIGHTS_PATH}/InternViT-300M-448px", "pretrain_mm_mlp_adapter": None, "mm_projector_type": "mlp2x_gelu", } model_args = SimpleNamespace(**model_args) model.get_model().initialize_vision_modules(model_args=model_args) # load audio encoder from types import SimpleNamespace model_args = { 'audio_encoder': f"{GLOBAL_WEIGHTS_PATH}/audio-encoder-2wh_zh_en_audioset_Mixtral-8x7B_New-base-tunning", 'freeze_audio_encoder': True, 'freeze_audio_encoder_adapter': True } model_args = SimpleNamespace(**model_args) model.get_model().initialize_audio_modules(model_args=model_args) audio_encoder = model.get_audio_encoder() device = torch.device('cuda:0') audio_encoder = audio_encoder.to(device) mm_projector_weights = torch.load( os.path.join(model_path, "mm_projector.bin"), map_location="cpu" ) mm_projector_weights = {k: v.to(torch.float16) for k, v in mm_projector_weights.items()} model.load_state_dict(mm_projector_weights, strict=False) model.model.mm_projector.to(device="cuda", dtype=torch.float16) model.model.vision_tower.to(device="cuda", dtype=torch.float16) else: if model_type == "mixtral-8x7b": # import pdb; pdb.set_trace() device_map = { "model.embed_tokens": 0, "model.layers.0": 0, "model.layers.1": 0, "model.layers.2": 0, "model.layers.3": 0, "model.layers.4": 0, "model.layers.5": 0, "model.layers.6": 0, "model.layers.7": 0, "model.layers.8": 0, "model.layers.9": 0, "model.layers.10": 0, "model.layers.11": 0, "model.layers.12": 0, "model.layers.13": 0, "model.layers.14": 0, "model.layers.15": 0, "model.layers.16": 1, "model.layers.17": 1, "model.layers.18": 1, "model.layers.19": 1, "model.layers.20": 1, "model.layers.21": 1, "model.layers.22": 1, "model.layers.23": 1, "model.layers.24": 1, "model.layers.25": 1, "model.layers.26": 1, "model.layers.27": 1, "model.layers.28": 1, "model.layers.29": 1, "model.layers.30": 1, "model.layers.31": 1, "model.norm": 1, "model.vision_tower": 1, "model.mm_projector": 1, "model.audio_encoder": 1, "lm_head": 1, } device_map["model.audio_encoder"] = 0 kwargs.update(device_map=device_map) tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True) model = VITAMixtralForCausalLM.from_pretrained( model_path, low_cpu_mem_usage=True, **kwargs ) # model.hf_device_map elif model_type == "nemo": # import pdb; pdb.set_trace() tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True) model = VITAMistralForCausalLM.from_pretrained( model_path, low_cpu_mem_usage=True, **kwargs ) elif model_type == "qwen2p5_instruct": # import pdb; pdb.set_trace() tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True) model = VITAQwen2ForCausalLM.from_pretrained( model_path, low_cpu_mem_usage=True, **kwargs ) elif model_type == "qwen2p5_fo_instruct": # import pdb; pdb.set_trace() tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True) model = VITAFOQwen2ForCausalLM.from_pretrained( model_path, low_cpu_mem_usage=True, **kwargs ) model.resize_token_embeddings(len(tokenizer)) vision_tower = model.get_vision_tower() if not vision_tower.is_loaded: vision_tower.load_model() num_params = sum(p.numel() for p in vision_tower.parameters()) print("the number of vision encoder params: {}M".format(num_params / 1024 / 1024)) if getattr(model.config, "unfreeze_vision_tower", False): if "lora" in model_name.lower(): assert model_base is not None vision_non_lora_trainables = { k[19:]: v for k, v in non_lora_trainables.items() if k.startswith("model.vision_tower.") } vision_tower.load_state_dict(vision_non_lora_trainables, strict=False) else: assert model_base is None from safetensors.torch import load_file vision_weights = {} for file_name in os.listdir(model_path): if file_name.endswith("safetensors"): vision_weights.update( { k[19:]: v for k, v in load_file(os.path.join(model_path, file_name)).items() if k.startswith("model.vision_tower.") } ) vision_tower.load_state_dict(vision_weights, strict=True) # import pdb; pdb.set_trace() # if (not getattr(model.config, "freeze_audio_encoder", True)) and (not getattr(model.config, "freeze_audio_encoder_adapter", True)): # from safetensors.torch import load_file # audio_weights = {} # for file_name in os.listdir(model_path): # if file_name.endswith('safetensors'): # audio_weights.update( # {k[20:]: v for k, v in load_file(os.path.join(model_path, file_name)).items() if # k.startswith('model.audio_encoder.')}) # audio_encoder.load_state_dict(audio_weights, strict=True) # audio_encoder.eval() # import pdb; pdb.set_trace() # import pdb; pdb.set_trace() # from safetensors.torch import load_file # audio_weights = {} # for file_name in os.listdir(model_path): # if file_name.endswith('safetensors'): # audio_weights.update( # {k[20:]: v for k, v in load_file(os.path.join(model_path, file_name)).items() if # k.startswith('model.audio_encoder.')}) # import pdb; pdb.set_trace() vision_tower.to(dtype=torch.float16) image_processor = vision_tower.image_processor #import pdb; pdb.set_trace() if hasattr(model.config, "max_sequence_length"): context_len = model.config.max_sequence_length else: context_len = 2048 if model.generation_config.pad_token_id is None: model.generation_config.pad_token_id = model.generation_config.eos_token_id if model_type == "phi-3": model.generation_config.eos_token_id = tokenizer.eos_token_id return tokenizer, model, image_processor, context_len