Spaces:
Running
on
Zero
Running
on
Zero
from typing import List, Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
from PIL import Image | |
from torch.nn import CrossEntropyLoss | |
from transformers import ( | |
AutoConfig, | |
AutoModelForCausalLM, | |
Qwen2Config, | |
Qwen2ForCausalLM, | |
Qwen2Model, | |
) | |
from transformers.cache_utils import Cache, DynamicCache | |
from transformers.modeling_outputs import CausalLMOutputWithPast, MoeCausalLMOutputWithPast | |
from transformers.generation.utils import GenerateOutput | |
from ..vita_arch import VITAMetaForCausalLM, VITAMetaModel | |
def custom_forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
return_dict: Optional[bool] = None, | |
cache_position: Optional[torch.LongTensor] = None, | |
) -> Union[Tuple, CausalLMOutputWithPast]: | |
r""" | |
Args: | |
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | |
Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., | |
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | |
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. | |
Returns: | |
Example: | |
```python | |
>>> from transformers import AutoTokenizer, Qwen2ForCausalLM | |
>>> model = Qwen2ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) | |
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) | |
>>> prompt = "Hey, are you conscious? Can you talk to me?" | |
>>> inputs = tokenizer(prompt, return_tensors="pt") | |
>>> # Generate | |
>>> generate_ids = model.generate(inputs.input_ids, max_length=30) | |
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." | |
```""" | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) | |
outputs = self.model( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
cache_position=cache_position, | |
) | |
hidden_states = outputs[0] | |
logits = self.lm_head(hidden_states) | |
# logits = logits.float() | |
loss = None | |
if labels is not None: | |
# Shift so that tokens < n predict n | |
shift_logits = logits[..., :-1, :].contiguous() | |
shift_labels = labels[..., 1:].contiguous() | |
# Flatten the tokens | |
loss_fct = CrossEntropyLoss() | |
shift_logits = shift_logits.view(-1, self.config.vocab_size) | |
shift_labels = shift_labels.view(-1) | |
# Enable model parallelism | |
shift_labels = shift_labels.to(shift_logits.device) | |
loss = loss_fct(shift_logits, shift_labels) | |
if not return_dict: | |
output = (logits,) + outputs[1:] | |
return (loss,) + output if loss is not None else output | |
#import pdb; pdb.set_trace() | |
return CausalLMOutputWithPast( | |
loss=loss, | |
logits=logits, | |
past_key_values=outputs.past_key_values, | |
hidden_states=outputs.hidden_states, | |
attentions=outputs.attentions, | |
) | |
Qwen2ForCausalLM.forward = custom_forward | |
class VITAQwen2Config(Qwen2Config): | |
model_type = "vita-Qwen2" | |
class VITAQwen2Model(VITAMetaModel, Qwen2Model): | |
config_class = VITAQwen2Config | |
def __init__(self, config: Qwen2Config): | |
super(VITAQwen2Model, self).__init__(config) | |
class VITAQwen2ForCausalLM(Qwen2ForCausalLM, VITAMetaForCausalLM): | |
config_class = VITAQwen2Config | |
def __init__(self, config): | |
super(Qwen2ForCausalLM, self).__init__(config) | |
self.model = VITAQwen2Model(config) | |
self.vocab_size = config.vocab_size | |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_model(self): | |
return self.model | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
images: Optional[torch.FloatTensor] = None, | |
audios: Optional[dict] = None, | |
sf_masks: Optional[torch.Tensor] = None, | |
return_dict: Optional[bool] = None, | |
cache_position: Optional[torch.LongTensor] = None, | |
) -> Union[Tuple, CausalLMOutputWithPast]: | |
if inputs_embeds is None: | |
( | |
input_ids, | |
position_ids, | |
attention_mask, | |
past_key_values, | |
inputs_embeds, | |
labels, | |
) = self.prepare_inputs_labels_for_multimodal( | |
input_ids, position_ids, attention_mask, past_key_values, labels, images, audios, sf_masks | |
) | |
return super().forward( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
labels=labels, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
cache_position=cache_position, | |
) | |
def generate( | |
self, | |
inputs: Optional[torch.Tensor] = None, | |
images: Optional[torch.Tensor] = None, | |
audios: Optional[torch.Tensor] = None, | |
sf_masks: Optional[torch.Tensor] = None, | |
shared_v_pid_stride: Optional[int] = None, | |
**kwargs, | |
) -> Union[GenerateOutput, torch.LongTensor]: | |
position_ids = kwargs.pop("position_ids", None) | |
attention_mask = kwargs.pop("attention_mask", None) | |
if "inputs_embeds" in kwargs: | |
raise NotImplementedError("`inputs_embeds` is not supported") | |
if images is not None or audios is not None: | |
( | |
inputs, | |
position_ids, | |
attention_mask, | |
_, | |
inputs_embeds, | |
_ | |
) = self.prepare_inputs_labels_for_multimodal( | |
inputs, | |
position_ids, | |
attention_mask, | |
None, | |
None, | |
images, | |
audios, | |
sf_masks, | |
shared_v_pid_stride, | |
) | |
else: | |
inputs_embeds = self.get_model().embed_tokens(inputs) | |
return super().generate( | |
position_ids=position_ids, | |
attention_mask=attention_mask, | |
inputs_embeds=inputs_embeds, | |
**kwargs | |
) | |
def prepare_inputs_for_generation( | |
self, | |
input_ids, | |
past_key_values=None, | |
inputs_embeds=None, | |
attention_mask=None, | |
**kwargs, | |
): | |
images = kwargs.pop("images", None) | |
audios = kwargs.pop("audios", None) | |
sf_masks = kwargs.pop("sf_masks", None) | |
_inputs = super().prepare_inputs_for_generation( | |
input_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
attention_mask=attention_mask, | |
**kwargs, | |
) | |
# import pdb; pdb.set_trace() | |
position_ids = _inputs["position_ids"] | |
cache_position = _inputs["cache_position"] | |
if cache_position.shape[-1] == 1 and position_ids.shape[-1] > 1: | |
new_position_ids = torch.zeros((position_ids.shape[0],1), dtype=position_ids.dtype, device=position_ids.device) | |
new_position_ids[:, 0] = position_ids[0,-1] + cache_position[-1] + 1 - position_ids.shape[-1] | |
position_ids = new_position_ids | |
_inputs["position_ids"] = position_ids | |
# import pdb; pdb.set_trace() | |
if images is not None: | |
_inputs["images"] = images | |
if audios is not None: | |
_inputs["audios"] = audios | |
if sf_masks is not None: | |
_inputs["sf_masks"] = sf_masks | |
return _inputs | |
def expand2square(self, pil_img, background_color): | |
width, height = pil_img.size | |
if width == height: | |
return pil_img | |
elif width > height: | |
result = Image.new(pil_img.mode, (width, width), background_color) | |
result.paste(pil_img, (0, (width - height) // 2)) | |
return result | |
else: | |
result = Image.new(pil_img.mode, (height, height), background_color) | |
result.paste(pil_img, ((height - width) // 2, 0)) | |
return result | |
def process_images(self, images, model_cfg): | |
vision_tower = self.get_vision_tower() | |
if not vision_tower.is_loaded: | |
vision_tower.load_model() | |
image_processor = vision_tower.image_processor | |
image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None) | |
new_images = [] | |
if image_aspect_ratio == "pad": | |
for image in images: | |
image = self.expand2square( | |
image, tuple(int(x * 255) for x in image_processor.image_mean) | |
) | |
image = image_processor.preprocess(image, return_tensors="pt")["pixel_values"][0] | |
new_images.append(image) | |
else: | |
return image_processor(images, return_tensors="pt")["pixel_values"] | |
if all(x.shape == new_images[0].shape for x in new_images): | |
new_images = torch.stack(new_images, dim=0) | |
return new_images | |
AutoConfig.register("vita-Qwen2", VITAQwen2Config) | |
AutoModelForCausalLM.register(VITAQwen2Config, VITAQwen2ForCausalLM) | |