Spaces:
Running
on
Zero
Running
on
Zero
from typing import List, Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
from PIL import Image | |
from torch.nn import CrossEntropyLoss | |
from transformers import ( | |
AutoConfig, | |
AutoModelForCausalLM, | |
Qwen2Config, | |
Qwen2ForCausalLM, | |
Qwen2Model, | |
) | |
from transformers.cache_utils import Cache, DynamicCache | |
from transformers.modeling_outputs import CausalLMOutputWithPast, MoeCausalLMOutputWithPast | |
from transformers.generation.utils import GenerateOutput | |
from ..vita_arch import VITAMetaForCausalLM, VITAMetaModel | |
from ...constants import IGNORE_INDEX | |
from .vita_qwen2 import custom_forward | |
Qwen2ForCausalLM.forward = custom_forward | |
class VITAFOQwen2Config(Qwen2Config): | |
model_type = "vita-fo-Qwen2" | |
class VITAFOQwen2Model(VITAMetaModel, Qwen2Model): | |
config_class = VITAFOQwen2Config | |
def __init__(self, config: Qwen2Config): | |
super(VITAFOQwen2Model, self).__init__(config) | |
class VITAFOQwen2ForCausalLM(Qwen2ForCausalLM, VITAMetaForCausalLM): | |
config_class = VITAFOQwen2Config | |
def __init__(self, config): | |
super(Qwen2ForCausalLM, self).__init__(config) | |
self.model = VITAFOQwen2Model(config) | |
self.vocab_size = config.vocab_size | |
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
self.predict_usr_state = 0#2 | |
if self.predict_usr_state: | |
self.predictor_head = torch.nn.Linear(config.hidden_size, self.predict_usr_state + 1) # +1 for the dummy class | |
else: | |
self.predictor_head = None | |
# Initialize weights and apply final processing | |
self.post_init() | |
def get_model(self): | |
return self.model | |
def forward( | |
self, | |
input_ids: torch.LongTensor = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
position_ids: Optional[torch.LongTensor] = None, | |
past_key_values: Optional[List[torch.FloatTensor]] = None, | |
inputs_embeds: Optional[torch.FloatTensor] = None, | |
labels: Optional[torch.LongTensor] = None, | |
use_cache: Optional[bool] = None, | |
output_attentions: Optional[bool] = None, | |
output_hidden_states: Optional[bool] = None, | |
images: Optional[torch.FloatTensor] = None, | |
audios: Optional[dict] = None, | |
sf_masks: Optional[torch.Tensor] = None, | |
return_dict: Optional[bool] = None, | |
cache_position: Optional[torch.LongTensor] = None, | |
) -> Union[Tuple, CausalLMOutputWithPast]: | |
if inputs_embeds is None: | |
( | |
input_ids, | |
position_ids, | |
attention_mask, | |
past_key_values, | |
inputs_embeds, | |
labels, | |
) = self.prepare_inputs_labels_for_multimodal( | |
input_ids, position_ids, attention_mask, past_key_values, labels, images, audios, sf_masks | |
) | |
if labels is not None: | |
state_labels = labels | |
labels = torch.where(labels>=0, labels, IGNORE_INDEX) | |
output_hidden_states = True | |
outputs = super().forward( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
position_ids=position_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
labels=labels, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
cache_position=cache_position, | |
) | |
# state loss | |
if self.predictor_head is not None: | |
state_logits = self.predictor_head(outputs[2][-1]).view(-1, self.predict_usr_state+1) # +1 for the dummy class | |
if labels is not None: | |
loss = outputs[0] | |
weight = torch.Tensor([1, 5, 1]).to(torch.bfloat16).to(inputs_embeds.device) | |
loss_fct = torch.nn.CrossEntropyLoss(weight=weight) | |
s_labels= torch.where( | |
state_labels < IGNORE_INDEX, | |
IGNORE_INDEX-state_labels-1, | |
IGNORE_INDEX).view(-1) | |
#assert all(label in [0, 1, IGNORE_INDEX] for label in s_labels), "s_labels must contain only 0, 1, or -100" | |
state_loss = loss_fct(state_logits, s_labels) | |
loss = loss + state_loss | |
outputs['loss'] = loss | |
return outputs | |
def generate( | |
self, | |
inputs: Optional[torch.Tensor] = None, | |
images: Optional[torch.Tensor] = None, | |
audios: Optional[torch.Tensor] = None, | |
sf_masks: Optional[torch.Tensor] = None, | |
**kwargs, | |
) -> Union[GenerateOutput, torch.LongTensor]: | |
position_ids = kwargs.pop("position_ids", None) | |
attention_mask = kwargs.pop("attention_mask", None) | |
if "inputs_embeds" in kwargs: | |
raise NotImplementedError("`inputs_embeds` is not supported") | |
if images is not None or audios is not None: | |
( | |
inputs, | |
position_ids, | |
attention_mask, | |
_, | |
inputs_embeds, | |
_ | |
) = self.prepare_inputs_labels_for_multimodal( | |
inputs, | |
position_ids, | |
attention_mask, | |
None, | |
None, | |
images, | |
audios, | |
sf_masks, | |
) | |
else: | |
inputs_embeds = self.get_model().embed_tokens(inputs) | |
return super().generate( | |
position_ids=position_ids, | |
attention_mask=attention_mask, | |
inputs_embeds=inputs_embeds, | |
**kwargs | |
) | |
def prepare_inputs_for_generation( | |
self, | |
input_ids, | |
past_key_values=None, | |
inputs_embeds=None, | |
attention_mask=None, | |
**kwargs, | |
): | |
images = kwargs.pop("images", None) | |
audios = kwargs.pop("audios", None) | |
sf_masks = kwargs.pop("sf_masks", None) | |
_inputs = super().prepare_inputs_for_generation( | |
input_ids, | |
past_key_values=past_key_values, | |
inputs_embeds=inputs_embeds, | |
attention_mask=attention_mask, | |
**kwargs, | |
) | |
if images is not None: | |
_inputs["images"] = images | |
if audios is not None: | |
_inputs["audios"] = audios | |
if sf_masks is not None: | |
_inputs["sf_masks"] = sf_masks | |
return _inputs | |
def expand2square(self, pil_img, background_color): | |
width, height = pil_img.size | |
if width == height: | |
return pil_img | |
elif width > height: | |
result = Image.new(pil_img.mode, (width, width), background_color) | |
result.paste(pil_img, (0, (width - height) // 2)) | |
return result | |
else: | |
result = Image.new(pil_img.mode, (height, height), background_color) | |
result.paste(pil_img, ((height - width) // 2, 0)) | |
return result | |
def process_images(self, images, model_cfg): | |
vision_tower = self.get_vision_tower() | |
if not vision_tower.is_loaded: | |
vision_tower.load_model() | |
image_processor = vision_tower.image_processor | |
image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None) | |
new_images = [] | |
if image_aspect_ratio == "pad": | |
for image in images: | |
image = self.expand2square( | |
image, tuple(int(x * 255) for x in image_processor.image_mean) | |
) | |
image = image_processor.preprocess(image, return_tensors="pt")["pixel_values"][0] | |
new_images.append(image) | |
else: | |
return image_processor(images, return_tensors="pt")["pixel_values"] | |
if all(x.shape == new_images[0].shape for x in new_images): | |
new_images = torch.stack(new_images, dim=0) | |
return new_images | |
AutoConfig.register("vita-fo-Qwen2", VITAFOQwen2Config) | |
AutoModelForCausalLM.register(VITAFOQwen2Config, VITAFOQwen2ForCausalLM) | |