Spaces:
Running
on
Zero
Running
on
Zero
import dataclasses | |
from enum import Enum, auto | |
from typing import List | |
class SeparatorStyle(Enum): | |
"""Different separator style.""" | |
TWO = auto() | |
PLAIN = auto() | |
Nemo = auto() | |
Qwen2p5Instruct = auto() | |
MixtralZh = auto() | |
MixtralTwo = auto() | |
class Conversation: | |
"""A class that keeps all conversation history.""" | |
system: str | |
roles: List[str] | |
messages: List[List[str]] | |
offset: int | |
sep_style: SeparatorStyle | |
sep: str = "###" | |
sep2: str = None | |
version: str = "Unknown" | |
skip_next: bool = False | |
def get_prompt(self, modality=None): | |
messages = self.messages | |
if len(messages) > 0 and type(messages[0][1]) is tuple: | |
messages = self.messages.copy() | |
init_role, init_msg = messages[0].copy() | |
init_msg = init_msg[0].replace("<image>", "").strip() | |
if "mmtag" in self.version: | |
messages[0] = (init_role, init_msg) | |
messages.insert(0, (self.roles[0], "<Image><image></Image>")) | |
messages.insert(1, (self.roles[1], "Received.")) | |
else: | |
messages[0] = (init_role, "<image>\n" + init_msg) | |
if self.sep_style == SeparatorStyle.TWO: | |
seps = [self.sep, self.sep2] | |
ret = self.system + seps[0] | |
for i, (role, message) in enumerate(messages): | |
if message: | |
if type(message) is tuple: | |
message, _, _ = message | |
ret += role + ": " + message + seps[i % 2] | |
else: | |
ret += role + ":" | |
elif self.sep_style == SeparatorStyle.MixtralZh: | |
seps = [self.sep, self.sep2] | |
ret = "system:" + self.system + seps[0] | |
for i, (role, message) in enumerate(messages): | |
if message: | |
if type(message) is tuple: | |
message, _, _ = message | |
ret += "\n" + role + ":" + message + seps[i % 2] | |
else: | |
ret += "\n" + role + ":" | |
elif self.sep_style == SeparatorStyle.MixtralTwo: | |
seps = [self.sep, self.sep2] | |
has_image = False | |
for i, (role, message) in enumerate(messages): | |
if message and "<image>" in message: | |
has_image = True | |
break | |
if has_image: | |
assert modality == "image" or modality == "video" | |
if modality == "image": | |
self.system = self.system[0] | |
elif modality == "video": | |
self.system = self.system[1] | |
else: | |
raise ValueError | |
else: | |
assert modality == "lang" | |
self.system = self.system[2] | |
ret = "system:" + self.system + seps[0] | |
for i, (role, message) in enumerate(messages): | |
if message: | |
if type(message) is tuple: | |
message, _, _ = message | |
ret += "\n" + role + ":" + message + seps[i % 2] | |
else: | |
ret += "\n" + role + ":" | |
elif self.sep_style == SeparatorStyle.Nemo: | |
wrap_inst = lambda msg: f"[INST]{msg}[/INST]" | |
seps = [self.sep, self.sep2] | |
has_image = False | |
for i, (role, message) in enumerate(messages): | |
if message and "<image>" in message: | |
has_image = True | |
break | |
if has_image: | |
assert modality == "image" or modality == "video" | |
if modality == "image": | |
self.system = self.system[0] | |
elif modality == "video": | |
self.system = self.system[1] | |
else: | |
raise ValueError | |
else: | |
assert modality == "lang" | |
self.system = self.system[2] | |
ret = "" | |
for i, (role, message) in enumerate(messages): | |
if message: | |
if type(message) is tuple: | |
message, _, _ = message | |
if i == 0: | |
message = self.system + '\n' + message | |
if i % 2 == 0: | |
ret += wrap_inst(message) | |
else: | |
ret += message + seps[i % 2] | |
else: | |
ret += "" | |
elif self.sep_style == SeparatorStyle.Qwen2p5Instruct: | |
wrap_qa = lambda msg: f"<|im_start|>{msg}<|im_end|>\n" | |
wrap_qa2 = lambda msg: f"<|im_start|>{msg}<|im_end|>" | |
seps = [self.sep, self.sep2] | |
has_image = False | |
for i, (role, message) in enumerate(messages): | |
if message and "<image>" in message: | |
has_image = True | |
break | |
if has_image: | |
assert modality == "image" or modality == "video" | |
if modality == "image": | |
self.system = self.system[0] | |
elif modality == "video": | |
self.system = self.system[1] | |
else: | |
raise ValueError | |
else: | |
assert modality == "lang" | |
self.system = self.system[2] | |
ret = wrap_qa("system\n" + self.system) | |
for i, (role, message) in enumerate(messages): | |
if message: | |
if type(message) is tuple: | |
message, _, _ = message | |
if i < len(messages) - 1: | |
ret += wrap_qa(role + '\n' + message) | |
else: | |
ret += wrap_qa2(role + '\n' + message) | |
else: | |
ret += "<|im_start|>" + role + '\n' | |
elif self.sep_style == SeparatorStyle.PLAIN: | |
seps = [self.sep, self.sep2] | |
ret = self.system | |
for i, (role, message) in enumerate(messages): | |
if message: | |
if type(message) is tuple: | |
message, _, _ = message | |
ret += message + seps[i % 2] | |
else: | |
ret += "" | |
else: | |
raise ValueError(f"Invalid style: {self.sep_style}") | |
return ret | |
def append_message(self, role, message): | |
self.messages.append([role, message]) | |
def get_images(self, return_pil=False): | |
images = [] | |
for i, (role, msg) in enumerate(self.messages[self.offset :]): | |
if i % 2 == 0: | |
if type(msg) is tuple: | |
import base64 | |
from io import BytesIO | |
from PIL import Image | |
msg, image, image_process_mode = msg | |
if image_process_mode == "Pad": | |
def expand2square(pil_img, background_color=(122, 116, 104)): | |
width, height = pil_img.size | |
if width == height: | |
return pil_img | |
elif width > height: | |
result = Image.new(pil_img.mode, (width, width), background_color) | |
result.paste(pil_img, (0, (width - height) // 2)) | |
return result | |
else: | |
result = Image.new(pil_img.mode, (height, height), background_color) | |
result.paste(pil_img, ((height - width) // 2, 0)) | |
return result | |
image = expand2square(image) | |
elif image_process_mode in ["Default", "Crop"]: | |
pass | |
elif image_process_mode == "Resize": | |
image = image.resize((336, 336)) | |
else: | |
raise ValueError(f"Invalid image_process_mode: {image_process_mode}") | |
if return_pil: | |
images.append(image) | |
else: | |
buffered = BytesIO() | |
image.save(buffered, format="PNG") | |
img_b64_str = base64.b64encode(buffered.getvalue()).decode() | |
images.append(img_b64_str) | |
return images | |
def to_gradio_chatbot(self): | |
ret = [] | |
for i, (role, msg) in enumerate(self.messages[self.offset :]): | |
if i % 2 == 0: | |
if type(msg) is tuple: | |
import base64 | |
from io import BytesIO | |
msg, image, image_process_mode = msg | |
max_hw, min_hw = max(image.size), min(image.size) | |
aspect_ratio = max_hw / min_hw | |
max_len, min_len = 800, 400 | |
shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw)) | |
longest_edge = int(shortest_edge * aspect_ratio) | |
W, H = image.size | |
if H > W: | |
H, W = longest_edge, shortest_edge | |
else: | |
H, W = shortest_edge, longest_edge | |
image = image.resize((W, H)) | |
buffered = BytesIO() | |
image.save(buffered, format="JPEG") | |
img_b64_str = base64.b64encode(buffered.getvalue()).decode() | |
img_str = ( | |
f'<img src="data:image/png;base64,{img_b64_str}" alt="user upload image" />' | |
) | |
msg = img_str + msg.replace("<image>", "").strip() | |
ret.append([msg, None]) | |
else: | |
ret.append([msg, None]) | |
else: | |
ret[-1][-1] = msg | |
return ret | |
def copy(self): | |
return Conversation( | |
system=self.system, | |
roles=self.roles, | |
messages=[[x, y] for x, y in self.messages], | |
offset=self.offset, | |
sep_style=self.sep_style, | |
sep=self.sep, | |
sep2=self.sep2, | |
version=self.version, | |
) | |
def dict(self): | |
if len(self.get_images()) > 0: | |
return { | |
"system": self.system, | |
"roles": self.roles, | |
"messages": [[x, y[0] if type(y) is tuple else y] for x, y in self.messages], | |
"offset": self.offset, | |
"sep": self.sep, | |
"sep2": self.sep2, | |
} | |
return { | |
"system": self.system, | |
"roles": self.roles, | |
"messages": self.messages, | |
"offset": self.offset, | |
"sep": self.sep, | |
"sep2": self.sep2, | |
} | |
conv_mixtral_zh = Conversation( | |
system="你是一个人工智能机器人。\n- 你是研究社区开发的大语言模型。你的设计宗旨是有益、诚实且无害。\n- 你支持使用用户选择的多种语言流利地进行交流并解答用户的问题。\n- 如果用户更正你生成的错误答案,你会向用户致歉并与用户探讨正确的答案。", | |
roles=("user", "bot"), | |
version="mixtral_zh", | |
messages=(), | |
offset=0, | |
sep_style=SeparatorStyle.MixtralZh, | |
sep="</s>", | |
sep2="</s>", | |
) | |
conv_mixtral_two = Conversation( | |
system=[ | |
"You are an AI robot and your name is VITA. \n- You are a multimodal large language model developed by the open source community. Your aim is to be helpful, honest and harmless. \n- You support the ability to communicate fluently and answer user questions in multiple languages of the user's choice. \n- If the user corrects the wrong answer you generated, you will apologize and discuss the correct answer with the user. \n- You must answer the question strictly according to the content of the image given by the user, and it is strictly forbidden to answer the question without the content of the image. Please note that you are seeing the image, not the video.", | |
"You are an AI robot and your name is VITA. \n- You are a multimodal large language model developed by the open source community. Your aim is to be helpful, honest and harmless. \n- You support the ability to communicate fluently and answer user questions in multiple languages of the user's choice. \n- If the user corrects the wrong answer you generated, you will apologize and discuss the correct answer with the user. \n- You must answer the question strictly according to the content of the video given by the user, and it is strictly forbidden to answer the question without the content of the video. Please note that you are seeing the video, not the image.", | |
"You are an AI robot and your name is VITA. \n- You are a multimodal large language model developed by the open source community. Your aim is to be helpful, honest and harmless. \n- You support the ability to communicate fluently and answer user questions in multiple languages of the user's choice. \n- If the user corrects the wrong answer you generated, you will apologize and discuss the correct answer with the user.", | |
], | |
roles=("user", "bot"), | |
version="mixtral_two", | |
messages=(), | |
offset=0, | |
sep_style=SeparatorStyle.MixtralTwo, | |
sep="</s>", | |
sep2="</s>", | |
) | |
conv_nemo = Conversation( | |
system=[ | |
"You are an AI robot and your name is VITA. \n- You are a multimodal large language model developed by the open source community. Your aim is to be helpful, honest and harmless. \n- You support the ability to communicate fluently and answer user questions in multiple languages of the user's choice. \n- If the user corrects the wrong answer you generated, you will apologize and discuss the correct answer with the user. \n- You must answer the question strictly according to the content of the image given by the user, and it is strictly forbidden to answer the question without the content of the image. Please note that you are seeing the image, not the video.", | |
"You are an AI robot and your name is VITA. \n- You are a multimodal large language model developed by the open source community. Your aim is to be helpful, honest and harmless. \n- You support the ability to communicate fluently and answer user questions in multiple languages of the user's choice. \n- If the user corrects the wrong answer you generated, you will apologize and discuss the correct answer with the user. \n- You must answer the question strictly according to the content of the video given by the user, and it is strictly forbidden to answer the question without the content of the video. Please note that you are seeing the video, not the image.", | |
"You are an AI robot and your name is VITA. \n- You are a multimodal large language model developed by the open source community. Your aim is to be helpful, honest and harmless. \n- You support the ability to communicate fluently and answer user questions in multiple languages of the user's choice. \n- If the user corrects the wrong answer you generated, you will apologize and discuss the correct answer with the user.", | |
], | |
roles=("USER", "ASSISTANT"), | |
version="nemo", | |
messages=(), | |
offset=0, | |
sep_style=SeparatorStyle.Nemo, | |
sep="[/INST]", | |
sep2="</s>", | |
) | |
conv_qwen2p5_instruct = Conversation( | |
system=[ | |
"You are an AI robot and your name is VITA. \n- You are a multimodal large language model developed by the open source community. Your aim is to be helpful, honest and harmless. \n- You support the ability to communicate fluently and answer user questions in multiple languages of the user's choice. \n- If the user corrects the wrong answer you generated, you will apologize and discuss the correct answer with the user. \n- You must answer the question strictly according to the content of the image given by the user, and it is strictly forbidden to answer the question without the content of the image. Please note that you are seeing the image, not the video.", | |
"You are an AI robot and your name is VITA. \n- You are a multimodal large language model developed by the open source community. Your aim is to be helpful, honest and harmless. \n- You support the ability to communicate fluently and answer user questions in multiple languages of the user's choice. \n- If the user corrects the wrong answer you generated, you will apologize and discuss the correct answer with the user. \n- You must answer the question strictly according to the content of the video given by the user, and it is strictly forbidden to answer the question without the content of the video. Please note that you are seeing the video, not the image.", | |
"You are an AI robot and your name is VITA. \n- You are a multimodal large language model developed by the open source community. Your aim is to be helpful, honest and harmless. \n- You support the ability to communicate fluently and answer user questions in multiple languages of the user's choice. \n- If the user corrects the wrong answer you generated, you will apologize and discuss the correct answer with the user.", | |
], | |
roles=("user", "assistant"), | |
version="qwen2p5_instruct", | |
messages=(), | |
offset=0, | |
sep_style=SeparatorStyle.Qwen2p5Instruct, | |
sep="<|im_start|>", | |
sep2="<|im_start|>", | |
) | |
conv_phi3 = Conversation( | |
system="A chat between a curious user and an artificial intelligence assistant. " | |
"The assistant gives helpful, detailed, and polite answers to the user's questions.", | |
roles=("USER", "ASSISTANT"), | |
version="phi3", | |
messages=(), | |
offset=0, | |
sep_style=SeparatorStyle.TWO, | |
sep=" ", | |
sep2="<|endoftext|>", | |
) | |
conv_minicpm = Conversation( | |
system="A chat between a curious user and an artificial intelligence assistant. " | |
"The assistant gives helpful, detailed, and polite answers to the user's questions.", | |
roles=("USER", "ASSISTANT"), | |
version="minicpm", | |
messages=(), | |
offset=0, | |
sep_style=SeparatorStyle.TWO, | |
sep=" ", | |
sep2="</s>", | |
) | |
conv_llama = Conversation( | |
system="A chat between a curious user and an artificial intelligence assistant. " | |
"The assistant gives helpful, detailed, and polite answers to the user's questions.", | |
roles=("USER", "ASSISTANT"), | |
version="llama", | |
messages=(), | |
offset=0, | |
sep_style=SeparatorStyle.TWO, | |
sep=" ", | |
sep2="<|end_of_text|>", | |
) | |
conv_plain = Conversation( | |
system="", | |
roles=("", ""), | |
messages=(), | |
offset=0, | |
sep_style=SeparatorStyle.PLAIN, | |
sep="\n", | |
) | |
default_conversation = conv_mixtral_two | |
conv_templates = { | |
"default": conv_mixtral_two, | |
"nemo": conv_nemo, | |
"qwen2p5_instruct": conv_qwen2p5_instruct, | |
"mixtral_zh": conv_mixtral_zh, | |
"mixtral_two": conv_mixtral_two, | |
"phi3": conv_phi3, | |
"plain": conv_plain, | |
"minicpm": conv_minicpm, | |
"llama": conv_llama, | |
} | |
if __name__ == "__main__": | |
print(default_conversation.get_prompt()) | |