VITA-1.5 / vita /conversation.py
lxysl's picture
upload vita-1.5 app.py
bc752b1
import dataclasses
from enum import Enum, auto
from typing import List
class SeparatorStyle(Enum):
"""Different separator style."""
TWO = auto()
PLAIN = auto()
Nemo = auto()
Qwen2p5Instruct = auto()
MixtralZh = auto()
MixtralTwo = auto()
@dataclasses.dataclass
class Conversation:
"""A class that keeps all conversation history."""
system: str
roles: List[str]
messages: List[List[str]]
offset: int
sep_style: SeparatorStyle
sep: str = "###"
sep2: str = None
version: str = "Unknown"
skip_next: bool = False
def get_prompt(self, modality=None):
messages = self.messages
if len(messages) > 0 and type(messages[0][1]) is tuple:
messages = self.messages.copy()
init_role, init_msg = messages[0].copy()
init_msg = init_msg[0].replace("<image>", "").strip()
if "mmtag" in self.version:
messages[0] = (init_role, init_msg)
messages.insert(0, (self.roles[0], "<Image><image></Image>"))
messages.insert(1, (self.roles[1], "Received."))
else:
messages[0] = (init_role, "<image>\n" + init_msg)
if self.sep_style == SeparatorStyle.TWO:
seps = [self.sep, self.sep2]
ret = self.system + seps[0]
for i, (role, message) in enumerate(messages):
if message:
if type(message) is tuple:
message, _, _ = message
ret += role + ": " + message + seps[i % 2]
else:
ret += role + ":"
elif self.sep_style == SeparatorStyle.MixtralZh:
seps = [self.sep, self.sep2]
ret = "system:" + self.system + seps[0]
for i, (role, message) in enumerate(messages):
if message:
if type(message) is tuple:
message, _, _ = message
ret += "\n" + role + ":" + message + seps[i % 2]
else:
ret += "\n" + role + ":"
elif self.sep_style == SeparatorStyle.MixtralTwo:
seps = [self.sep, self.sep2]
has_image = False
for i, (role, message) in enumerate(messages):
if message and "<image>" in message:
has_image = True
break
if has_image:
assert modality == "image" or modality == "video"
if modality == "image":
self.system = self.system[0]
elif modality == "video":
self.system = self.system[1]
else:
raise ValueError
else:
assert modality == "lang"
self.system = self.system[2]
ret = "system:" + self.system + seps[0]
for i, (role, message) in enumerate(messages):
if message:
if type(message) is tuple:
message, _, _ = message
ret += "\n" + role + ":" + message + seps[i % 2]
else:
ret += "\n" + role + ":"
elif self.sep_style == SeparatorStyle.Nemo:
wrap_inst = lambda msg: f"[INST]{msg}[/INST]"
seps = [self.sep, self.sep2]
has_image = False
for i, (role, message) in enumerate(messages):
if message and "<image>" in message:
has_image = True
break
if has_image:
assert modality == "image" or modality == "video"
if modality == "image":
self.system = self.system[0]
elif modality == "video":
self.system = self.system[1]
else:
raise ValueError
else:
assert modality == "lang"
self.system = self.system[2]
ret = ""
for i, (role, message) in enumerate(messages):
if message:
if type(message) is tuple:
message, _, _ = message
if i == 0:
message = self.system + '\n' + message
if i % 2 == 0:
ret += wrap_inst(message)
else:
ret += message + seps[i % 2]
else:
ret += ""
elif self.sep_style == SeparatorStyle.Qwen2p5Instruct:
wrap_qa = lambda msg: f"<|im_start|>{msg}<|im_end|>\n"
wrap_qa2 = lambda msg: f"<|im_start|>{msg}<|im_end|>"
seps = [self.sep, self.sep2]
has_image = False
for i, (role, message) in enumerate(messages):
if message and "<image>" in message:
has_image = True
break
if has_image:
assert modality == "image" or modality == "video"
if modality == "image":
self.system = self.system[0]
elif modality == "video":
self.system = self.system[1]
else:
raise ValueError
else:
assert modality == "lang"
self.system = self.system[2]
ret = wrap_qa("system\n" + self.system)
for i, (role, message) in enumerate(messages):
if message:
if type(message) is tuple:
message, _, _ = message
if i < len(messages) - 1:
ret += wrap_qa(role + '\n' + message)
else:
ret += wrap_qa2(role + '\n' + message)
else:
ret += "<|im_start|>" + role + '\n'
elif self.sep_style == SeparatorStyle.PLAIN:
seps = [self.sep, self.sep2]
ret = self.system
for i, (role, message) in enumerate(messages):
if message:
if type(message) is tuple:
message, _, _ = message
ret += message + seps[i % 2]
else:
ret += ""
else:
raise ValueError(f"Invalid style: {self.sep_style}")
return ret
def append_message(self, role, message):
self.messages.append([role, message])
def get_images(self, return_pil=False):
images = []
for i, (role, msg) in enumerate(self.messages[self.offset :]):
if i % 2 == 0:
if type(msg) is tuple:
import base64
from io import BytesIO
from PIL import Image
msg, image, image_process_mode = msg
if image_process_mode == "Pad":
def expand2square(pil_img, background_color=(122, 116, 104)):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
image = expand2square(image)
elif image_process_mode in ["Default", "Crop"]:
pass
elif image_process_mode == "Resize":
image = image.resize((336, 336))
else:
raise ValueError(f"Invalid image_process_mode: {image_process_mode}")
if return_pil:
images.append(image)
else:
buffered = BytesIO()
image.save(buffered, format="PNG")
img_b64_str = base64.b64encode(buffered.getvalue()).decode()
images.append(img_b64_str)
return images
def to_gradio_chatbot(self):
ret = []
for i, (role, msg) in enumerate(self.messages[self.offset :]):
if i % 2 == 0:
if type(msg) is tuple:
import base64
from io import BytesIO
msg, image, image_process_mode = msg
max_hw, min_hw = max(image.size), min(image.size)
aspect_ratio = max_hw / min_hw
max_len, min_len = 800, 400
shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
longest_edge = int(shortest_edge * aspect_ratio)
W, H = image.size
if H > W:
H, W = longest_edge, shortest_edge
else:
H, W = shortest_edge, longest_edge
image = image.resize((W, H))
buffered = BytesIO()
image.save(buffered, format="JPEG")
img_b64_str = base64.b64encode(buffered.getvalue()).decode()
img_str = (
f'<img src="data:image/png;base64,{img_b64_str}" alt="user upload image" />'
)
msg = img_str + msg.replace("<image>", "").strip()
ret.append([msg, None])
else:
ret.append([msg, None])
else:
ret[-1][-1] = msg
return ret
def copy(self):
return Conversation(
system=self.system,
roles=self.roles,
messages=[[x, y] for x, y in self.messages],
offset=self.offset,
sep_style=self.sep_style,
sep=self.sep,
sep2=self.sep2,
version=self.version,
)
def dict(self):
if len(self.get_images()) > 0:
return {
"system": self.system,
"roles": self.roles,
"messages": [[x, y[0] if type(y) is tuple else y] for x, y in self.messages],
"offset": self.offset,
"sep": self.sep,
"sep2": self.sep2,
}
return {
"system": self.system,
"roles": self.roles,
"messages": self.messages,
"offset": self.offset,
"sep": self.sep,
"sep2": self.sep2,
}
conv_mixtral_zh = Conversation(
system="你是一个人工智能机器人。\n- 你是研究社区开发的大语言模型。你的设计宗旨是有益、诚实且无害。\n- 你支持使用用户选择的多种语言流利地进行交流并解答用户的问题。\n- 如果用户更正你生成的错误答案,你会向用户致歉并与用户探讨正确的答案。",
roles=("user", "bot"),
version="mixtral_zh",
messages=(),
offset=0,
sep_style=SeparatorStyle.MixtralZh,
sep="</s>",
sep2="</s>",
)
conv_mixtral_two = Conversation(
system=[
"You are an AI robot and your name is VITA. \n- You are a multimodal large language model developed by the open source community. Your aim is to be helpful, honest and harmless. \n- You support the ability to communicate fluently and answer user questions in multiple languages of the user's choice. \n- If the user corrects the wrong answer you generated, you will apologize and discuss the correct answer with the user. \n- You must answer the question strictly according to the content of the image given by the user, and it is strictly forbidden to answer the question without the content of the image. Please note that you are seeing the image, not the video.",
"You are an AI robot and your name is VITA. \n- You are a multimodal large language model developed by the open source community. Your aim is to be helpful, honest and harmless. \n- You support the ability to communicate fluently and answer user questions in multiple languages of the user's choice. \n- If the user corrects the wrong answer you generated, you will apologize and discuss the correct answer with the user. \n- You must answer the question strictly according to the content of the video given by the user, and it is strictly forbidden to answer the question without the content of the video. Please note that you are seeing the video, not the image.",
"You are an AI robot and your name is VITA. \n- You are a multimodal large language model developed by the open source community. Your aim is to be helpful, honest and harmless. \n- You support the ability to communicate fluently and answer user questions in multiple languages of the user's choice. \n- If the user corrects the wrong answer you generated, you will apologize and discuss the correct answer with the user.",
],
roles=("user", "bot"),
version="mixtral_two",
messages=(),
offset=0,
sep_style=SeparatorStyle.MixtralTwo,
sep="</s>",
sep2="</s>",
)
conv_nemo = Conversation(
system=[
"You are an AI robot and your name is VITA. \n- You are a multimodal large language model developed by the open source community. Your aim is to be helpful, honest and harmless. \n- You support the ability to communicate fluently and answer user questions in multiple languages of the user's choice. \n- If the user corrects the wrong answer you generated, you will apologize and discuss the correct answer with the user. \n- You must answer the question strictly according to the content of the image given by the user, and it is strictly forbidden to answer the question without the content of the image. Please note that you are seeing the image, not the video.",
"You are an AI robot and your name is VITA. \n- You are a multimodal large language model developed by the open source community. Your aim is to be helpful, honest and harmless. \n- You support the ability to communicate fluently and answer user questions in multiple languages of the user's choice. \n- If the user corrects the wrong answer you generated, you will apologize and discuss the correct answer with the user. \n- You must answer the question strictly according to the content of the video given by the user, and it is strictly forbidden to answer the question without the content of the video. Please note that you are seeing the video, not the image.",
"You are an AI robot and your name is VITA. \n- You are a multimodal large language model developed by the open source community. Your aim is to be helpful, honest and harmless. \n- You support the ability to communicate fluently and answer user questions in multiple languages of the user's choice. \n- If the user corrects the wrong answer you generated, you will apologize and discuss the correct answer with the user.",
],
roles=("USER", "ASSISTANT"),
version="nemo",
messages=(),
offset=0,
sep_style=SeparatorStyle.Nemo,
sep="[/INST]",
sep2="</s>",
)
conv_qwen2p5_instruct = Conversation(
system=[
"You are an AI robot and your name is VITA. \n- You are a multimodal large language model developed by the open source community. Your aim is to be helpful, honest and harmless. \n- You support the ability to communicate fluently and answer user questions in multiple languages of the user's choice. \n- If the user corrects the wrong answer you generated, you will apologize and discuss the correct answer with the user. \n- You must answer the question strictly according to the content of the image given by the user, and it is strictly forbidden to answer the question without the content of the image. Please note that you are seeing the image, not the video.",
"You are an AI robot and your name is VITA. \n- You are a multimodal large language model developed by the open source community. Your aim is to be helpful, honest and harmless. \n- You support the ability to communicate fluently and answer user questions in multiple languages of the user's choice. \n- If the user corrects the wrong answer you generated, you will apologize and discuss the correct answer with the user. \n- You must answer the question strictly according to the content of the video given by the user, and it is strictly forbidden to answer the question without the content of the video. Please note that you are seeing the video, not the image.",
"You are an AI robot and your name is VITA. \n- You are a multimodal large language model developed by the open source community. Your aim is to be helpful, honest and harmless. \n- You support the ability to communicate fluently and answer user questions in multiple languages of the user's choice. \n- If the user corrects the wrong answer you generated, you will apologize and discuss the correct answer with the user.",
],
roles=("user", "assistant"),
version="qwen2p5_instruct",
messages=(),
offset=0,
sep_style=SeparatorStyle.Qwen2p5Instruct,
sep="<|im_start|>",
sep2="<|im_start|>",
)
conv_phi3 = Conversation(
system="A chat between a curious user and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the user's questions.",
roles=("USER", "ASSISTANT"),
version="phi3",
messages=(),
offset=0,
sep_style=SeparatorStyle.TWO,
sep=" ",
sep2="<|endoftext|>",
)
conv_minicpm = Conversation(
system="A chat between a curious user and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the user's questions.",
roles=("USER", "ASSISTANT"),
version="minicpm",
messages=(),
offset=0,
sep_style=SeparatorStyle.TWO,
sep=" ",
sep2="</s>",
)
conv_llama = Conversation(
system="A chat between a curious user and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the user's questions.",
roles=("USER", "ASSISTANT"),
version="llama",
messages=(),
offset=0,
sep_style=SeparatorStyle.TWO,
sep=" ",
sep2="<|end_of_text|>",
)
conv_plain = Conversation(
system="",
roles=("", ""),
messages=(),
offset=0,
sep_style=SeparatorStyle.PLAIN,
sep="\n",
)
default_conversation = conv_mixtral_two
conv_templates = {
"default": conv_mixtral_two,
"nemo": conv_nemo,
"qwen2p5_instruct": conv_qwen2p5_instruct,
"mixtral_zh": conv_mixtral_zh,
"mixtral_two": conv_mixtral_two,
"phi3": conv_phi3,
"plain": conv_plain,
"minicpm": conv_minicpm,
"llama": conv_llama,
}
if __name__ == "__main__":
print(default_conversation.get_prompt())