Spaces:
Running
on
Zero
Running
on
Zero
import numpy as np | |
import torch | |
import json | |
import math | |
class GlobalCMVN(torch.nn.Module): | |
def __init__(self, mean: torch.Tensor, istd: torch.Tensor, norm_var: bool = True): | |
""" | |
Args: | |
mean (torch.Tensor): mean stats | |
istd (torch.Tensor): inverse std, std which is 1.0 / std | |
""" | |
super().__init__() | |
assert mean.shape == istd.shape | |
self.norm_var = norm_var | |
# The buffer can be accessed from this module using self.mean | |
self.register_buffer("mean", mean) | |
self.register_buffer("istd", istd) | |
def forward(self, x: torch.Tensor): | |
""" | |
Args: | |
x (torch.Tensor): (batch, max_len, feat_dim) | |
Returns: | |
(torch.Tensor): normalized feature | |
""" | |
x = x - self.mean | |
if self.norm_var: | |
x = x * self.istd | |
return x | |
def load_cmvn_json(json_cmvn_file): | |
with open(json_cmvn_file) as f: | |
cmvn_json = json.load(f) | |
avg = cmvn_json["mean_stat"] | |
var = cmvn_json["var_stat"] | |
count = cmvn_json["frame_num"] | |
for i in range(len(avg)): | |
avg[i] /= count | |
var[i] = var[i] / count - avg[i] * avg[i] | |
if var[i] < 1.0e-20: | |
var[i] = 1.0e-20 | |
var[i] = 1.0 / math.sqrt(var[i]) | |
cmvn = np.array([avg, var]) | |
return cmvn | |
def load_cmvn_kaldi(kaldi_cmvn_file): | |
avg = [] | |
var = [] | |
with open(kaldi_cmvn_file, "r") as file: | |
# kaldi binary file start with '\0B' | |
if file.read(2) == "\0B": | |
logging.error( | |
"kaldi cmvn binary file is not supported, please " | |
) | |
sys.exit(1) | |
file.seek(0) | |
arr = file.read().split() | |
assert arr[0] == "[" | |
assert arr[-2] == "0" | |
assert arr[-1] == "]" | |
feat_dim = int((len(arr) - 2 - 2) / 2) | |
for i in range(1, feat_dim + 1): | |
avg.append(float(arr[i])) | |
count = float(arr[feat_dim + 1]) | |
for i in range(feat_dim + 2, 2 * feat_dim + 2): | |
var.append(float(arr[i])) | |
for i in range(len(avg)): | |
avg[i] /= count | |
var[i] = var[i] / count - avg[i] * avg[i] | |
if var[i] < 1.0e-20: | |
var[i] = 1.0e-20 | |
var[i] = 1.0 / math.sqrt(var[i]) | |
cmvn = np.array([avg, var]) | |
return cmvn | |
def load_cmvn(filename, is_json): | |
if is_json: | |
file = load_cmvn_json(filename) | |
else: | |
file = load_cmvn_kaldi(filename) | |
return file[0], file[1] | |