Spaces:
Running
on
Zero
Running
on
Zero
""" | |
# Adapted from https://github.com/baaivision/EVA/tree/master/EVA-CLIP | |
""" | |
import logging | |
# -------------------------------------------------------- | |
# Adapted from https://github.com/microsoft/unilm/tree/master/beit | |
# -------------------------------------------------------- | |
import math | |
import os | |
from dataclasses import dataclass | |
from functools import partial | |
from math import pi | |
from typing import Optional, Tuple, Union | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from einops import rearrange, repeat | |
from torch import nn as nn | |
import xformers.ops as xops | |
def broadcat(tensors, dim=-1): | |
num_tensors = len(tensors) | |
shape_lens = set(list(map(lambda t: len(t.shape), tensors))) | |
assert len(shape_lens) == 1, "tensors must all have the same number of dimensions" | |
shape_len = list(shape_lens)[0] | |
dim = (dim + shape_len) if dim < 0 else dim | |
dims = list(zip(*map(lambda t: list(t.shape), tensors))) | |
expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim] | |
assert all( | |
[*map(lambda t: len(set(t[1])) <= 2, expandable_dims)] | |
), "invalid dimensions for broadcastable concatentation" | |
max_dims = list(map(lambda t: (t[0], max(t[1])), expandable_dims)) | |
expanded_dims = list(map(lambda t: (t[0], (t[1],) * num_tensors), max_dims)) | |
expanded_dims.insert(dim, (dim, dims[dim])) | |
expandable_shapes = list(zip(*map(lambda t: t[1], expanded_dims))) | |
tensors = list(map(lambda t: t[0].expand(*t[1]), zip(tensors, expandable_shapes))) | |
return torch.cat(tensors, dim=dim) | |
def rotate_half(x): | |
x = rearrange(x, "... (d r) -> ... d r", r=2) | |
x1, x2 = x.unbind(dim=-1) | |
x = torch.stack((-x2, x1), dim=-1) | |
return rearrange(x, "... d r -> ... (d r)") | |
class VisionRotaryEmbeddingFast(nn.Module): | |
def __init__( | |
self, | |
dim, | |
pt_seq_len, | |
ft_seq_len=None, | |
custom_freqs=None, | |
freqs_for="lang", | |
theta=10000, | |
max_freq=10, | |
num_freqs=1, | |
patch_dropout=0.0, | |
): | |
super().__init__() | |
if custom_freqs: | |
freqs = custom_freqs | |
elif freqs_for == "lang": | |
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) | |
elif freqs_for == "pixel": | |
freqs = torch.linspace(1.0, max_freq / 2, dim // 2) * pi | |
elif freqs_for == "constant": | |
freqs = torch.ones(num_freqs).float() | |
else: | |
raise ValueError(f"unknown modality {freqs_for}") | |
if ft_seq_len is None: | |
ft_seq_len = pt_seq_len | |
t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len | |
freqs = torch.einsum("..., f -> ... f", t, freqs) | |
freqs = repeat(freqs, "... n -> ... (n r)", r=2) | |
freqs = broadcat((freqs[:, None, :], freqs[None, :, :]), dim=-1) | |
freqs_cos = freqs.cos().view(-1, freqs.shape[-1]) | |
freqs_sin = freqs.sin().view(-1, freqs.shape[-1]) | |
self.patch_dropout = patch_dropout | |
self.register_buffer("freqs_cos", freqs_cos) | |
self.register_buffer("freqs_sin", freqs_sin) | |
logging.info(f"Shape of rope freq: {self.freqs_cos.shape}") | |
def forward(self, t, patch_indices_keep=None): | |
if patch_indices_keep is not None: | |
batch = t.size()[0] | |
batch_indices = torch.arange(batch) | |
batch_indices = batch_indices[..., None] | |
freqs_cos = repeat(self.freqs_cos, "i j -> n i m j", n=t.shape[0], m=t.shape[1]) | |
freqs_sin = repeat(self.freqs_sin, "i j -> n i m j", n=t.shape[0], m=t.shape[1]) | |
freqs_cos = freqs_cos[batch_indices, patch_indices_keep] | |
freqs_cos = rearrange(freqs_cos, "n i m j -> n m i j") | |
freqs_sin = freqs_sin[batch_indices, patch_indices_keep] | |
freqs_sin = rearrange(freqs_sin, "n i m j -> n m i j") | |
return t * freqs_cos + rotate_half(t) * freqs_sin | |
return t * self.freqs_cos + rotate_half(t) * self.freqs_sin | |
class LayerNorm(nn.LayerNorm): | |
"""Subclass torch's LayerNorm (with cast back to input dtype).""" | |
def forward(self, x: torch.Tensor): | |
orig_type = x.dtype | |
x = F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps) | |
return x.to(orig_type) | |
class PatchDropout(nn.Module): | |
""" | |
https://arxiv.org/abs/2212.00794 | |
""" | |
def __init__(self, prob, exclude_first_token=True): | |
super().__init__() | |
assert 0 <= prob < 1.0 | |
self.prob = prob | |
self.exclude_first_token = exclude_first_token # exclude CLS token | |
logging.info(f"os.getenv('RoPE')={os.getenv('RoPE')}") | |
def forward(self, x): | |
if not self.training or self.prob == 0.0: | |
return x | |
if self.exclude_first_token: | |
cls_tokens, x = x[:, :1], x[:, 1:] | |
else: | |
cls_tokens = torch.jit.annotate(torch.Tensor, x[:, :1]) | |
batch = x.size()[0] | |
num_tokens = x.size()[1] | |
batch_indices = torch.arange(batch) | |
batch_indices = batch_indices[..., None] | |
keep_prob = 1 - self.prob | |
num_patches_keep = max(1, int(num_tokens * keep_prob)) | |
rand = torch.randn(batch, num_tokens) | |
patch_indices_keep = rand.topk(num_patches_keep, dim=-1).indices | |
x = x[batch_indices, patch_indices_keep] | |
if self.exclude_first_token: | |
x = torch.cat((cls_tokens, x), dim=1) | |
if self.training and os.getenv("RoPE") == "1": | |
return x, patch_indices_keep | |
return x | |
try: | |
from timm.models.layers import drop_path, to_2tuple, trunc_normal_ | |
except: | |
from timm.layers import drop_path, to_2tuple, trunc_normal_ | |
if os.getenv("ENV_TYPE") == "deepspeed": | |
try: | |
from deepspeed.runtime.activation_checkpointing.checkpointing import checkpoint | |
except: | |
from torch.utils.checkpoint import checkpoint | |
else: | |
from torch.utils.checkpoint import checkpoint | |
class DropPath(nn.Module): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" | |
def __init__(self, drop_prob=None): | |
super(DropPath, self).__init__() | |
self.drop_prob = drop_prob | |
def forward(self, x): | |
return drop_path(x, self.drop_prob, self.training) | |
def extra_repr(self) -> str: | |
return "p={}".format(self.drop_prob) | |
class Mlp(nn.Module): | |
def __init__( | |
self, | |
in_features, | |
hidden_features=None, | |
out_features=None, | |
act_layer=nn.GELU, | |
norm_layer=nn.LayerNorm, | |
drop=0.0, | |
subln=False, | |
): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.act = act_layer() | |
self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity() | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
# x = self.drop(x) | |
# commit this for the orignal BERT implement | |
x = self.ffn_ln(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
class SwiGLU(nn.Module): | |
def __init__( | |
self, | |
in_features, | |
hidden_features=None, | |
out_features=None, | |
act_layer=nn.SiLU, | |
drop=0.0, | |
norm_layer=nn.LayerNorm, | |
subln=False, | |
): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.w1 = nn.Linear(in_features, hidden_features) | |
self.w2 = nn.Linear(in_features, hidden_features) | |
self.act = act_layer() | |
self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity() | |
self.w3 = nn.Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop) | |
def forward(self, x): | |
x1 = self.w1(x) | |
x2 = self.w2(x) | |
hidden = self.act(x1) * x2 | |
x = self.ffn_ln(hidden) | |
x = self.w3(x) | |
x = self.drop(x) | |
return x | |
class Attention(nn.Module): | |
def __init__( | |
self, | |
dim, | |
num_heads=8, | |
qkv_bias=False, | |
qk_scale=None, | |
attn_drop=0.0, | |
proj_drop=0.0, | |
window_size=None, | |
attn_head_dim=None, | |
xattn=False, | |
rope=None, | |
subln=False, | |
norm_layer=nn.LayerNorm, | |
): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
if attn_head_dim is not None: | |
head_dim = attn_head_dim | |
all_head_dim = head_dim * self.num_heads | |
self.scale = qk_scale or head_dim**-0.5 | |
self.subln = subln | |
if self.subln: | |
self.q_proj = nn.Linear(dim, all_head_dim, bias=False) | |
self.k_proj = nn.Linear(dim, all_head_dim, bias=False) | |
self.v_proj = nn.Linear(dim, all_head_dim, bias=False) | |
else: | |
self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False) | |
if qkv_bias: | |
self.q_bias = nn.Parameter(torch.zeros(all_head_dim)) | |
self.v_bias = nn.Parameter(torch.zeros(all_head_dim)) | |
else: | |
self.q_bias = None | |
self.v_bias = None | |
if window_size: | |
self.window_size = window_size | |
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 | |
self.relative_position_bias_table = nn.Parameter( | |
torch.zeros(self.num_relative_distance, num_heads) | |
) # 2*Wh-1 * 2*Ww-1, nH | |
# cls to token & token 2 cls & cls to cls | |
# get pair-wise relative position index for each token inside the window | |
coords_h = torch.arange(window_size[0]) | |
coords_w = torch.arange(window_size[1]) | |
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww | |
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww | |
relative_coords = ( | |
coords_flatten[:, :, None] - coords_flatten[:, None, :] | |
) # 2, Wh*Ww, Wh*Ww | |
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 | |
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 | |
relative_coords[:, :, 1] += window_size[1] - 1 | |
relative_coords[:, :, 0] *= 2 * window_size[1] - 1 | |
relative_position_index = torch.zeros( | |
size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype | |
) | |
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww | |
relative_position_index[0, 0:] = self.num_relative_distance - 3 | |
relative_position_index[0:, 0] = self.num_relative_distance - 2 | |
relative_position_index[0, 0] = self.num_relative_distance - 1 | |
self.register_buffer("relative_position_index", relative_position_index) | |
else: | |
self.window_size = None | |
self.relative_position_bias_table = None | |
self.relative_position_index = None | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.inner_attn_ln = norm_layer(all_head_dim) if subln else nn.Identity() | |
# self.proj = nn.Linear(all_head_dim, all_head_dim) | |
self.proj = nn.Linear(all_head_dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
self.xattn = xattn | |
self.xattn_drop = attn_drop | |
self.rope = rope | |
def forward(self, x, rel_pos_bias=None, attn_mask=None): | |
B, N, C = x.shape | |
if self.subln: | |
q = F.linear(input=x, weight=self.q_proj.weight, bias=self.q_bias) | |
k = F.linear(input=x, weight=self.k_proj.weight, bias=None) | |
v = F.linear(input=x, weight=self.v_proj.weight, bias=self.v_bias) | |
q = q.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) # B, num_heads, N, C | |
k = k.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) | |
v = v.reshape(B, N, self.num_heads, -1).permute(0, 2, 1, 3) | |
else: | |
qkv_bias = None | |
if self.q_bias is not None: | |
qkv_bias = torch.cat( | |
(self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias) | |
) | |
qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias) | |
qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute( | |
2, 0, 3, 1, 4 | |
) # 3, B, num_heads, N, C | |
q, k, v = qkv[0], qkv[1], qkv[2] | |
if self.rope: | |
# slightly fast impl | |
q_t = q[:, :, 1:, :] | |
ro_q_t = self.rope(q_t) | |
q = torch.cat((q[:, :, :1, :], ro_q_t), -2).type_as(v) | |
k_t = k[:, :, 1:, :] | |
ro_k_t = self.rope(k_t) | |
k = torch.cat((k[:, :, :1, :], ro_k_t), -2).type_as(v) | |
if self.xattn: | |
q = q.permute(0, 2, 1, 3) # B, num_heads, N, C -> B, N, num_heads, C | |
k = k.permute(0, 2, 1, 3) | |
v = v.permute(0, 2, 1, 3) | |
x = xops.memory_efficient_attention( | |
q, | |
k, | |
v, | |
p=self.xattn_drop, | |
scale=self.scale, | |
) | |
x = x.reshape(B, N, -1) | |
x = self.inner_attn_ln(x) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
else: | |
q = q * self.scale | |
attn = q @ k.transpose(-2, -1) | |
if self.relative_position_bias_table is not None: | |
relative_position_bias = self.relative_position_bias_table[ | |
self.relative_position_index.view(-1) | |
].view( | |
self.window_size[0] * self.window_size[1] + 1, | |
self.window_size[0] * self.window_size[1] + 1, | |
-1, | |
) # Wh*Ww,Wh*Ww,nH | |
relative_position_bias = relative_position_bias.permute( | |
2, 0, 1 | |
).contiguous() # nH, Wh*Ww, Wh*Ww | |
attn = attn + relative_position_bias.unsqueeze(0).type_as(attn) | |
if rel_pos_bias is not None: | |
attn = attn + rel_pos_bias.type_as(attn) | |
if attn_mask is not None: | |
attn_mask = attn_mask.bool() | |
attn = attn.masked_fill(~attn_mask[:, None, None, :], float("-inf")) | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, -1) | |
x = self.inner_attn_ln(x) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class Block(nn.Module): | |
def __init__( | |
self, | |
dim, | |
num_heads, | |
mlp_ratio=4.0, | |
qkv_bias=False, | |
qk_scale=None, | |
drop=0.0, | |
attn_drop=0.0, | |
drop_path=0.0, | |
init_values=None, | |
act_layer=nn.GELU, | |
norm_layer=nn.LayerNorm, | |
window_size=None, | |
attn_head_dim=None, | |
xattn=False, | |
rope=None, | |
postnorm=False, | |
subln=False, | |
naiveswiglu=False, | |
): | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
self.attn = Attention( | |
dim, | |
num_heads=num_heads, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
attn_drop=attn_drop, | |
proj_drop=drop, | |
window_size=window_size, | |
attn_head_dim=attn_head_dim, | |
xattn=xattn, | |
rope=rope, | |
subln=subln, | |
norm_layer=norm_layer, | |
) | |
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here | |
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
if naiveswiglu: | |
self.mlp = SwiGLU( | |
in_features=dim, | |
hidden_features=mlp_hidden_dim, | |
subln=subln, | |
norm_layer=norm_layer, | |
) | |
else: | |
self.mlp = Mlp( | |
in_features=dim, | |
hidden_features=mlp_hidden_dim, | |
act_layer=act_layer, | |
subln=subln, | |
drop=drop, | |
) | |
if init_values is not None and init_values > 0: | |
self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True) | |
self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True) | |
else: | |
self.gamma_1, self.gamma_2 = None, None | |
self.postnorm = postnorm | |
def forward(self, x, rel_pos_bias=None, attn_mask=None): | |
if self.gamma_1 is None: | |
if self.postnorm: | |
x = x + self.drop_path( | |
self.norm1(self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)) | |
) | |
x = x + self.drop_path(self.norm2(self.mlp(x))) | |
else: | |
x = x + self.drop_path( | |
self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask) | |
) | |
x = x + self.drop_path(self.mlp(self.norm2(x))) | |
else: | |
if self.postnorm: | |
x = x + self.drop_path( | |
self.gamma_1 | |
* self.norm1(self.attn(x, rel_pos_bias=rel_pos_bias, attn_mask=attn_mask)) | |
) | |
x = x + self.drop_path(self.gamma_2 * self.norm2(self.mlp(x))) | |
else: | |
x = x + self.drop_path( | |
self.gamma_1 | |
* self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias, attn_mask=attn_mask) | |
) | |
x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x))) | |
return x | |
class PatchEmbed(nn.Module): | |
"""Image to Patch Embedding""" | |
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768): | |
super().__init__() | |
img_size = to_2tuple(img_size) | |
patch_size = to_2tuple(patch_size) | |
num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) | |
self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1]) | |
self.img_size = img_size | |
self.patch_size = patch_size | |
self.num_patches = num_patches | |
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) | |
def forward(self, x, **kwargs): | |
B, C, H, W = x.shape | |
# FIXME look at relaxing size constraints | |
assert ( | |
H == self.img_size[0] and W == self.img_size[1] | |
), f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})." | |
x = self.proj(x).flatten(2).transpose(1, 2) | |
return x | |
class RelativePositionBias(nn.Module): | |
def __init__(self, window_size, num_heads): | |
super().__init__() | |
self.window_size = window_size | |
self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3 | |
self.relative_position_bias_table = nn.Parameter( | |
torch.zeros(self.num_relative_distance, num_heads) | |
) # 2*Wh-1 * 2*Ww-1, nH | |
# cls to token & token 2 cls & cls to cls | |
# get pair-wise relative position index for each token inside the window | |
coords_h = torch.arange(window_size[0]) | |
coords_w = torch.arange(window_size[1]) | |
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww | |
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww | |
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww | |
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 | |
relative_coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 | |
relative_coords[:, :, 1] += window_size[1] - 1 | |
relative_coords[:, :, 0] *= 2 * window_size[1] - 1 | |
relative_position_index = torch.zeros( | |
size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype | |
) | |
relative_position_index[1:, 1:] = relative_coords.sum(-1) # Wh*Ww, Wh*Ww | |
relative_position_index[0, 0:] = self.num_relative_distance - 3 | |
relative_position_index[0:, 0] = self.num_relative_distance - 2 | |
relative_position_index[0, 0] = self.num_relative_distance - 1 | |
self.register_buffer("relative_position_index", relative_position_index) | |
def forward(self): | |
relative_position_bias = self.relative_position_bias_table[ | |
self.relative_position_index.view(-1) | |
].view( | |
self.window_size[0] * self.window_size[1] + 1, | |
self.window_size[0] * self.window_size[1] + 1, | |
-1, | |
) # Wh*Ww,Wh*Ww,nH | |
return relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww | |
class EVAVisionTransformer(nn.Module): | |
"""Vision Transformer with support for patch or hybrid CNN input stage""" | |
def __init__( | |
self, | |
img_size=224, | |
patch_size=16, | |
in_chans=3, | |
num_classes=1000, | |
embed_dim=768, | |
depth=12, | |
num_heads=12, | |
mlp_ratio=4.0, | |
qkv_bias=False, | |
qk_scale=None, | |
drop_rate=0.0, | |
attn_drop_rate=0.0, | |
drop_path_rate=0.0, | |
norm_layer=nn.LayerNorm, | |
init_values=None, | |
patch_dropout=0.0, | |
use_abs_pos_emb=True, | |
use_rel_pos_bias=False, | |
use_shared_rel_pos_bias=False, | |
rope=False, | |
use_mean_pooling=True, | |
init_scale=0.001, | |
grad_checkpointing=False, | |
xattn=False, | |
postnorm=False, | |
pt_hw_seq_len=16, | |
intp_freq=False, | |
naiveswiglu=False, | |
subln=False, | |
): | |
super().__init__() | |
self.image_size = img_size | |
self.num_classes = num_classes | |
self.num_features = ( | |
self.embed_dim | |
) = embed_dim # num_features for consistency with other models | |
self.patch_embed = PatchEmbed( | |
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim | |
) | |
num_patches = self.patch_embed.num_patches | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) | |
# self.mask_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) | |
if use_abs_pos_emb: | |
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim)) | |
else: | |
self.pos_embed = None | |
self.pos_drop = nn.Dropout(p=drop_rate) | |
if use_shared_rel_pos_bias: | |
self.rel_pos_bias = RelativePositionBias( | |
window_size=self.patch_embed.patch_shape, num_heads=num_heads | |
) | |
else: | |
self.rel_pos_bias = None | |
if rope: | |
half_head_dim = embed_dim // num_heads // 2 | |
hw_seq_len = img_size // patch_size | |
self.rope = VisionRotaryEmbeddingFast( | |
dim=half_head_dim, | |
pt_seq_len=pt_hw_seq_len, | |
ft_seq_len=hw_seq_len if intp_freq else None, | |
# patch_dropout=patch_dropout | |
) | |
else: | |
self.rope = None | |
self.naiveswiglu = naiveswiglu | |
dpr = [ | |
x.item() for x in torch.linspace(0, drop_path_rate, depth) | |
] # stochastic depth decay rule | |
self.use_rel_pos_bias = use_rel_pos_bias | |
self.blocks = nn.ModuleList( | |
[ | |
Block( | |
dim=embed_dim, | |
num_heads=num_heads, | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
drop=drop_rate, | |
attn_drop=attn_drop_rate, | |
drop_path=dpr[i], | |
norm_layer=norm_layer, | |
init_values=init_values, | |
window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None, | |
xattn=xattn, | |
rope=self.rope, | |
postnorm=postnorm, | |
subln=subln, | |
naiveswiglu=naiveswiglu, | |
) | |
for i in range(depth) | |
] | |
) | |
self.norm = nn.Identity() if use_mean_pooling else norm_layer(embed_dim) | |
self.fc_norm = norm_layer(embed_dim) if use_mean_pooling else None | |
self.head = nn.Linear(embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
if self.pos_embed is not None: | |
trunc_normal_(self.pos_embed, std=0.02) | |
trunc_normal_(self.cls_token, std=0.02) | |
# trunc_normal_(self.mask_token, std=.02) | |
self.apply(self._init_weights) | |
self.fix_init_weight() | |
if isinstance(self.head, nn.Linear): | |
trunc_normal_(self.head.weight, std=0.02) | |
self.head.weight.data.mul_(init_scale) | |
self.head.bias.data.mul_(init_scale) | |
# setting a patch_dropout of 0. would mean it is disabled and this function would be the identity fn | |
self.patch_dropout = PatchDropout(patch_dropout) if patch_dropout > 0.0 else nn.Identity() | |
self.grad_checkpointing = grad_checkpointing | |
def fix_init_weight(self): | |
def rescale(param, layer_id): | |
param.div_(math.sqrt(2.0 * layer_id)) | |
for layer_id, layer in enumerate(self.blocks): | |
rescale(layer.attn.proj.weight.data, layer_id + 1) | |
if self.naiveswiglu: | |
rescale(layer.mlp.w3.weight.data, layer_id + 1) | |
else: | |
rescale(layer.mlp.fc2.weight.data, layer_id + 1) | |
def get_cast_dtype(self) -> torch.dtype: | |
return self.blocks[0].mlp.fc2.weight.dtype | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight, std=0.02) | |
if m.bias is not None: | |
nn.init.constant_(m.bias, 0) | |
elif isinstance(m, nn.LayerNorm): | |
nn.init.constant_(m.bias, 0) | |
nn.init.constant_(m.weight, 1.0) | |
def get_num_layers(self): | |
return len(self.blocks) | |
def lock(self, unlocked_groups=0, freeze_bn_stats=False): | |
assert unlocked_groups == 0, "partial locking not currently supported for this model" | |
for param in self.parameters(): | |
param.requires_grad = False | |
def set_grad_checkpointing(self, enable=True): | |
self.grad_checkpointing = enable | |
def no_weight_decay(self): | |
return {"pos_embed", "cls_token"} | |
def get_classifier(self): | |
return self.head | |
def reset_classifier(self, num_classes, global_pool=""): | |
self.num_classes = num_classes | |
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
def forward_features(self, x, return_all_features=False): | |
x = self.patch_embed(x) | |
batch_size, seq_len, _ = x.size() | |
cls_tokens = self.cls_token.expand( | |
batch_size, -1, -1 | |
) # stole cls_tokens impl from Phil Wang, thanks | |
x = torch.cat((cls_tokens, x), dim=1) | |
if self.pos_embed is not None: | |
x = x + self.pos_embed | |
x = self.pos_drop(x) | |
# a patch_dropout of 0. would mean it is disabled and this function would do nothing but return what was passed in | |
if os.getenv("RoPE") == "1": | |
if self.training and not isinstance(self.patch_dropout, nn.Identity): | |
x, patch_indices_keep = self.patch_dropout(x) | |
self.rope.forward = partial( | |
self.rope.forward, patch_indices_keep=patch_indices_keep | |
) | |
else: | |
self.rope.forward = partial(self.rope.forward, patch_indices_keep=None) | |
x = self.patch_dropout(x) | |
else: | |
x = self.patch_dropout(x) | |
rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None | |
for i, blk in enumerate(self.blocks): | |
if i == len(self.blocks) - 1: | |
continue | |
if self.grad_checkpointing: | |
x = checkpoint(blk, x, (rel_pos_bias,)) | |
else: | |
x = blk(x, rel_pos_bias=rel_pos_bias) | |
if not return_all_features: | |
x = self.norm(x) | |
if self.fc_norm is not None: | |
return self.fc_norm(x.mean(1)) | |
else: | |
return x[:, 0] | |
return x | |
def forward(self, x, return_all_features=False): | |
if return_all_features: | |
return self.forward_features(x, return_all_features) | |
x = self.forward_features(x) | |
x = self.head(x) | |
return x | |
def load_state_dict( | |
checkpoint_path: str, | |
map_location: str = "cpu", | |
model_key: str = "model|module|state_dict", | |
is_openai: bool = False, | |
skip_list: list = [], | |
): | |
if is_openai: | |
model = torch.jit.load(checkpoint_path, map_location="cpu").eval() | |
state_dict = model.state_dict() | |
for key in ["input_resolution", "context_length", "vocab_size"]: | |
state_dict.pop(key, None) | |
else: | |
checkpoint = torch.load(checkpoint_path, map_location=map_location) | |
for mk in model_key.split("|"): | |
if isinstance(checkpoint, dict) and mk in checkpoint: | |
state_dict = checkpoint[mk] | |
break | |
else: | |
state_dict = checkpoint | |
if next(iter(state_dict.items()))[0].startswith("module"): | |
state_dict = {k[7:]: v for k, v in state_dict.items()} | |
for k in skip_list: | |
if k in list(state_dict.keys()): | |
logging.info(f"Removing key {k} from pretrained checkpoint") | |
del state_dict[k] | |
if os.getenv("RoPE") == "1": | |
for k in list(state_dict.keys()): | |
if "freqs_cos" in k or "freqs_sin" in k: | |
del state_dict[k] | |
return state_dict | |
def load_clip_visual_state_dict( | |
checkpoint_path: str, map_location: str = "cpu", is_openai: bool = False, skip_list: list = [] | |
): | |
state_dict = load_state_dict( | |
checkpoint_path, map_location=map_location, is_openai=is_openai, skip_list=skip_list | |
) | |
for k in list(state_dict.keys()): | |
if not k.startswith("visual."): | |
del state_dict[k] | |
for k in list(state_dict.keys()): | |
if k.startswith("visual."): | |
new_k = k[7:] | |
state_dict[new_k] = state_dict[k] | |
del state_dict[k] | |
return state_dict | |
try: | |
from apex.normalization import FusedLayerNorm | |
except: | |
FusedLayerNorm = LayerNorm | |
print( | |
"Please build and install Nvidia apex package with option '--cuda_ext' according to https://github.com/NVIDIA/apex#from-source ." | |
) | |
class CLIPVisionCfg: | |
layers: Union[Tuple[int, int, int, int], int] = 12 | |
width: int = 768 | |
head_width: int = 64 | |
mlp_ratio: float = 4.0 | |
patch_size: int = 16 | |
image_size: Union[Tuple[int, int], int] = 224 | |
ls_init_value: Optional[float] = None # layer scale initial value | |
patch_dropout: float = 0.0 # what fraction of patches to dropout during training (0 would mean disabled and no patches dropped) - 0.5 to 0.75 recommended in the paper for optimal results | |
global_average_pool: bool = False # whether to global average pool the last embedding layer, instead of using CLS token (https://arxiv.org/abs/2205.01580) | |
drop_path_rate: Optional[float] = None # drop path rate | |
timm_model_name: str = None # a valid model name overrides layers, width, patch_size | |
timm_model_pretrained: bool = False # use (imagenet) pretrained weights for named model | |
timm_pool: str = "avg" # feature pooling for timm model ('abs_attn', 'rot_attn', 'avg', '') | |
timm_proj: str = "linear" # linear projection for timm model output ('linear', 'mlp', '') | |
timm_proj_bias: bool = False # enable bias final projection | |
eva_model_name: str = None # a valid eva model name overrides layers, width, patch_size | |
qkv_bias: bool = True | |
fusedLN: bool = False | |
xattn: bool = False | |
postnorm: bool = False | |
rope: bool = False | |
pt_hw_seq_len: int = 16 # 224/14 | |
intp_freq: bool = False | |
naiveswiglu: bool = False | |
subln: bool = False | |
def _build_vision_tower(vision_tower_path: str, embed_dim: int, vision_cfg: CLIPVisionCfg): | |
if isinstance(vision_cfg, dict): | |
vision_cfg = CLIPVisionCfg(**vision_cfg) | |
if vision_cfg.eva_model_name: | |
vision_heads = vision_cfg.width // vision_cfg.head_width | |
norm_layer = LayerNorm | |
visual = EVAVisionTransformer( | |
img_size=vision_cfg.image_size, | |
patch_size=vision_cfg.patch_size, | |
num_classes=embed_dim, | |
use_mean_pooling=vision_cfg.global_average_pool, # False | |
init_values=vision_cfg.ls_init_value, | |
patch_dropout=vision_cfg.patch_dropout, | |
embed_dim=vision_cfg.width, | |
depth=vision_cfg.layers, | |
num_heads=vision_heads, | |
mlp_ratio=vision_cfg.mlp_ratio, | |
qkv_bias=vision_cfg.qkv_bias, | |
drop_path_rate=vision_cfg.drop_path_rate, | |
norm_layer=partial(FusedLayerNorm, eps=1e-6) | |
if vision_cfg.fusedLN | |
else partial(norm_layer, eps=1e-6), | |
xattn=vision_cfg.xattn, | |
rope=vision_cfg.rope, | |
postnorm=vision_cfg.postnorm, | |
pt_hw_seq_len=vision_cfg.pt_hw_seq_len, # 224/14 | |
intp_freq=vision_cfg.intp_freq, | |
naiveswiglu=vision_cfg.naiveswiglu, | |
subln=vision_cfg.subln, | |
) | |
state_dict = load_clip_visual_state_dict(vision_tower_path) | |
incompatible_keys = visual.load_state_dict(state_dict, strict=False) | |
print("EVA-CLIP incompatible_keys:", incompatible_keys) | |
return visual | |
class Eva2LargePlusEncoder(nn.Module): | |
def __init__(self, vision_tower_path): | |
super(Eva2LargePlusEncoder, self).__init__() | |
self.config = { | |
"embed_dim": 768, | |
"vision_cfg": { | |
"image_size": 336, | |
"layers": 24, | |
"width": 1024, | |
"drop_path_rate": 0, | |
"head_width": 64, | |
"mlp_ratio": 2.6667, | |
"patch_size": 14, | |
"eva_model_name": "eva-clip-l-14-336", | |
"xattn": True, | |
"fusedLN": True, | |
"rope": True, | |
"pt_hw_seq_len": 16, | |
"intp_freq": True, | |
"naiveswiglu": True, | |
"subln": True, | |
}, | |
} | |
self.config["vision_tower_path"] = vision_tower_path | |
self.model = _build_vision_tower(**self.config) | |
def forward(self, image, **kwargs): | |
encode = self.model(image, return_all_features=True)[:, 1:, :] | |
return encode | |
def dtype(self): | |
return list(self.parameters())[-1].dtype | |
def device(self): | |
return list(self.parameters())[-1].device | |