lxysl's picture
upload vita-1.5 app.py
bc752b1
raw
history blame
2.19 kB
import json
import torch
import torch.nn as nn
from vita.model.vita_tts.decoder.ticodec.models import Encoder
from vita.model.vita_tts.decoder.ticodec.models import Generator
from vita.model.vita_tts.decoder.ticodec.models import Quantizer
class AttrDict(dict):
def __init__(self, *args, **kwargs):
super(AttrDict, self).__init__(*args, **kwargs)
self.__dict__ = self
class VQVAE(nn.Module):
def __init__(self,
config_path,
ckpt_path,
with_encoder=False):
super(VQVAE, self).__init__()
ckpt = torch.load(ckpt_path)
with open(config_path) as f:
data = f.read()
json_config = json.loads(data)
self.h = AttrDict(json_config)
# self.gst = GST()
# self.gst = Proposed(n_specs=128, token_num=10, E=128, n_layers=4)
self.quantizer = Quantizer(self.h)
self.generator = Generator(self.h)
self.generator.load_state_dict(ckpt['generator'])
self.quantizer.load_state_dict(ckpt['quantizer'])
# self.gst.load_state_dict(ckpt['gst'])
if with_encoder:
self.encoder = Encoder(self.h)
self.encoder.load_state_dict(ckpt['encoder'])
def forward(self, x, global_style_token):
# x is the codebook
# x.shape (B, T, Nq)
quant_emb = self.quantizer.embed(x)
global_style_quantized_emb = self.quantizer.embed_gst(global_style_token).squeeze(-1)
return self.generator(quant_emb, global_style_quantized_emb)
def encode(self, x):
batch_size = x.size(0)
if len(x.shape) == 3 and x.shape[-1] == 1:
x = x.squeeze(-1)
# print(x.shape)
c, global_features = self.encoder(x.unsqueeze(1))
# mid = mid.transpose(1, 2).unsqueeze(1)
# global_style = self.gst(mid)
q, loss_q, local_token, g, global_style_token = self.quantizer(c, global_features)
local_token = [code.reshape(batch_size, -1) for code in local_token]
global_style_token = torch.stack(global_style_token, -1).unsqueeze(1)
# shape: [N, T, 4]
return torch.stack(local_token, -1), global_style_token