Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import warnings | |
import torch | |
from transformers import AutoConfig, AutoTokenizer, BitsAndBytesConfig, logging | |
from vita.constants import GLOBAL_WEIGHTS_PATH | |
from vita.model import * | |
logging.set_verbosity_error() | |
warnings.filterwarnings("ignore") | |
def load_pretrained_model( | |
model_path, | |
model_base, | |
model_name, | |
model_type, | |
load_8bit=False, | |
load_4bit=False, | |
device_map="auto", | |
device="cuda", | |
**kwargs, | |
): | |
if model_type not in {"mixtral-8x7b", "nemo", "qwen2p5_instruct", "qwen2p5_fo_instruct"}: | |
raise ValueError(f"Unknown Model Type {model_type}") | |
kwargs = {"device_map": device_map, **kwargs} | |
if device != "cuda": | |
kwargs["device_map"] = {"": device} | |
if load_8bit: | |
kwargs["load_in_8bit"] = True | |
elif load_4bit: | |
kwargs["load_in_4bit"] = True | |
kwargs["quantization_config"] = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_compute_dtype=torch.float16, | |
bnb_4bit_use_double_quant=True, | |
bnb_4bit_quant_type="nf4", | |
) | |
else: | |
kwargs["torch_dtype"] = torch.float16 | |
# Load VITA model | |
if "lora" in model_name.lower() and model_base is None: | |
warnings.warn( | |
"There is `lora` in model name but no `model_base` is provided. If you are loading a LoRA model, please provide the `model_base` argument." | |
) | |
if "lora" in model_name.lower() and model_base is not None: | |
lora_cfg_pretrained = AutoConfig.from_pretrained(model_path) | |
print("Loading VITA from base model...") | |
if model_type == "mixtral-8x7b": | |
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True) | |
model = VITAMixtralForCausalLM.from_pretrained( | |
model_path, low_cpu_mem_usage=True, **kwargs | |
) | |
token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features | |
if model.lm_head.weight.shape[0] != token_num: | |
model.lm_head.weight = torch.nn.Parameter( | |
torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype) | |
) | |
model.model.embed_tokens.weight = torch.nn.Parameter( | |
torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype) | |
) | |
print("Loading additional VITA weights...") | |
if os.path.exists(os.path.join(model_path, "non_lora_trainables.bin")): | |
non_lora_trainables = torch.load( | |
os.path.join(model_path, "non_lora_trainables.bin"), map_location="cpu" | |
) | |
else: | |
# this is probably from HF Hub | |
from huggingface_hub import hf_hub_download | |
def load_from_hf(repo_id, filename, subfolder=None): | |
cache_file = hf_hub_download( | |
repo_id=repo_id, filename=filename, subfolder=subfolder | |
) | |
return torch.load(cache_file, map_location="cpu") | |
non_lora_trainables = load_from_hf(model_path, "non_lora_trainables.bin") | |
non_lora_trainables = { | |
(k[11:] if k.startswith("base_model.") else k): v | |
for k, v in non_lora_trainables.items() | |
} | |
if any(k.startswith("model.model.") for k in non_lora_trainables): | |
non_lora_trainables = { | |
(k[6:] if k.startswith("model.") else k): v for k, v in non_lora_trainables.items() | |
} | |
model.load_state_dict(non_lora_trainables, strict=False) | |
from peft import PeftModel | |
print("Loading LoRA weights...") | |
model = PeftModel.from_pretrained(model, model_path) | |
print("Merging LoRA weights...") | |
model = model.merge_and_unload() | |
print("Model is loaded...") | |
elif model_base is not None: | |
# this may be mm projector only | |
print("Loading VITA from base model...") | |
cfg_pretrained = AutoConfig.from_pretrained(model_path) | |
if model_type == "mixtral-8x7b": | |
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=True) | |
model = VITAMixtralForCausalLM.from_pretrained( | |
model_base, low_cpu_mem_usage=True, **kwargs | |
) | |
# load vision encoder | |
from types import SimpleNamespace | |
model_args = { | |
"vision_tower": f"{GLOBAL_WEIGHTS_PATH}/InternViT-300M-448px", | |
"pretrain_mm_mlp_adapter": None, | |
"mm_projector_type": "mlp2x_gelu", | |
} | |
model_args = SimpleNamespace(**model_args) | |
model.get_model().initialize_vision_modules(model_args=model_args) | |
# load audio encoder | |
from types import SimpleNamespace | |
model_args = { | |
'audio_encoder': f"{GLOBAL_WEIGHTS_PATH}/audio-encoder-2wh_zh_en_audioset_Mixtral-8x7B_New-base-tunning", | |
'freeze_audio_encoder': True, | |
'freeze_audio_encoder_adapter': True | |
} | |
model_args = SimpleNamespace(**model_args) | |
model.get_model().initialize_audio_modules(model_args=model_args) | |
audio_encoder = model.get_audio_encoder() | |
device = torch.device('cuda:0') | |
audio_encoder = audio_encoder.to(device) | |
mm_projector_weights = torch.load( | |
os.path.join(model_path, "mm_projector.bin"), map_location="cpu" | |
) | |
mm_projector_weights = {k: v.to(torch.float16) for k, v in mm_projector_weights.items()} | |
model.load_state_dict(mm_projector_weights, strict=False) | |
model.model.mm_projector.to(device="cuda", dtype=torch.float16) | |
model.model.vision_tower.to(device="cuda", dtype=torch.float16) | |
else: | |
if model_type == "mixtral-8x7b": | |
# import pdb; pdb.set_trace() | |
device_map = { | |
"model.embed_tokens": 0, | |
"model.layers.0": 0, | |
"model.layers.1": 0, | |
"model.layers.2": 0, | |
"model.layers.3": 0, | |
"model.layers.4": 0, | |
"model.layers.5": 0, | |
"model.layers.6": 0, | |
"model.layers.7": 0, | |
"model.layers.8": 0, | |
"model.layers.9": 0, | |
"model.layers.10": 0, | |
"model.layers.11": 0, | |
"model.layers.12": 0, | |
"model.layers.13": 0, | |
"model.layers.14": 0, | |
"model.layers.15": 0, | |
"model.layers.16": 1, | |
"model.layers.17": 1, | |
"model.layers.18": 1, | |
"model.layers.19": 1, | |
"model.layers.20": 1, | |
"model.layers.21": 1, | |
"model.layers.22": 1, | |
"model.layers.23": 1, | |
"model.layers.24": 1, | |
"model.layers.25": 1, | |
"model.layers.26": 1, | |
"model.layers.27": 1, | |
"model.layers.28": 1, | |
"model.layers.29": 1, | |
"model.layers.30": 1, | |
"model.layers.31": 1, | |
"model.norm": 1, | |
"model.vision_tower": 1, | |
"model.mm_projector": 1, | |
"model.audio_encoder": 1, | |
"lm_head": 1, | |
} | |
device_map["model.audio_encoder"] = 0 | |
kwargs.update(device_map=device_map) | |
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True) | |
model = VITAMixtralForCausalLM.from_pretrained( | |
model_path, low_cpu_mem_usage=True, **kwargs | |
) | |
# model.hf_device_map | |
elif model_type == "nemo": | |
# import pdb; pdb.set_trace() | |
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True) | |
model = VITAMistralForCausalLM.from_pretrained( | |
model_path, low_cpu_mem_usage=True, **kwargs | |
) | |
elif model_type == "qwen2p5_instruct": | |
# import pdb; pdb.set_trace() | |
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True) | |
model = VITAQwen2ForCausalLM.from_pretrained( | |
model_path, low_cpu_mem_usage=True, **kwargs | |
) | |
elif model_type == "qwen2p5_fo_instruct": | |
# import pdb; pdb.set_trace() | |
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True) | |
model = VITAFOQwen2ForCausalLM.from_pretrained( | |
model_path, low_cpu_mem_usage=True, **kwargs | |
) | |
model.resize_token_embeddings(len(tokenizer)) | |
vision_tower = model.get_vision_tower() | |
if not vision_tower.is_loaded: | |
vision_tower.load_model() | |
num_params = sum(p.numel() for p in vision_tower.parameters()) | |
print("the number of vision encoder params: {}M".format(num_params / 1024 / 1024)) | |
if getattr(model.config, "unfreeze_vision_tower", False): | |
if "lora" in model_name.lower(): | |
assert model_base is not None | |
vision_non_lora_trainables = { | |
k[19:]: v | |
for k, v in non_lora_trainables.items() | |
if k.startswith("model.vision_tower.") | |
} | |
vision_tower.load_state_dict(vision_non_lora_trainables, strict=False) | |
else: | |
assert model_base is None | |
from safetensors.torch import load_file | |
vision_weights = {} | |
for file_name in os.listdir(model_path): | |
if file_name.endswith("safetensors"): | |
vision_weights.update( | |
{ | |
k[19:]: v | |
for k, v in load_file(os.path.join(model_path, file_name)).items() | |
if k.startswith("model.vision_tower.") | |
} | |
) | |
vision_tower.load_state_dict(vision_weights, strict=True) | |
# import pdb; pdb.set_trace() | |
# if (not getattr(model.config, "freeze_audio_encoder", True)) and (not getattr(model.config, "freeze_audio_encoder_adapter", True)): | |
# from safetensors.torch import load_file | |
# audio_weights = {} | |
# for file_name in os.listdir(model_path): | |
# if file_name.endswith('safetensors'): | |
# audio_weights.update( | |
# {k[20:]: v for k, v in load_file(os.path.join(model_path, file_name)).items() if | |
# k.startswith('model.audio_encoder.')}) | |
# audio_encoder.load_state_dict(audio_weights, strict=True) | |
# audio_encoder.eval() | |
# import pdb; pdb.set_trace() | |
# import pdb; pdb.set_trace() | |
# from safetensors.torch import load_file | |
# audio_weights = {} | |
# for file_name in os.listdir(model_path): | |
# if file_name.endswith('safetensors'): | |
# audio_weights.update( | |
# {k[20:]: v for k, v in load_file(os.path.join(model_path, file_name)).items() if | |
# k.startswith('model.audio_encoder.')}) | |
# import pdb; pdb.set_trace() | |
vision_tower.to(dtype=torch.float16) | |
image_processor = vision_tower.image_processor | |
#import pdb; pdb.set_trace() | |
if hasattr(model.config, "max_sequence_length"): | |
context_len = model.config.max_sequence_length | |
else: | |
context_len = 2048 | |
if model.generation_config.pad_token_id is None: | |
model.generation_config.pad_token_id = model.generation_config.eos_token_id | |
if model_type == "phi-3": | |
model.generation_config.eos_token_id = tokenizer.eos_token_id | |
return tokenizer, model, image_processor, context_len | |