File size: 3,650 Bytes
bc752b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
#  ------------------------------------------------------------------------------------------
#  Copyright (c) 2024 Baifeng Shi.
#  All rights reserved.
#
#  Licensed under the MIT License (MIT). See LICENSE in the repo root for license information.
#  ------------------------------------------------------------------------------------------

import math

import torch
import torch.nn.functional as F
from einops import rearrange

from .utils import batched_forward, merge_chessboard, split_chessboard


def forward(
    model,
    input,
    scales=None,
    img_sizes=None,
    max_split_size=None,
    resize_output_to_idx=0,
    num_prefix_token=0,
    output_shape="bnc",
    split_forward=False,
):

    assert input.dim() == 4, "Input image must be in the shape of BxCxHxW."
    assert input.shape[2] == input.shape[3], "Currently only square images are supported."
    assert output_shape in [
        "bnc",
        "bchw",
    ], "Output shape should be either BxNxC (e.g., ViT) or BxCxHxW (e.g., ConvNet)."
    assert (
        output_shape == "bnc" or num_prefix_token == 0
    ), "For ConvNet there shouldn't be any prefix token."

    b, c, input_size, _ = input.shape

    # image size for each scale
    assert scales is not None or img_sizes is not None, "Please assign either scales or img_sizes."
    img_sizes = img_sizes or [int(input_size * scale) for scale in scales]

    # prepare multiscale inputs
    max_split_size = (
        max_split_size or input_size
    )  # The maximum size of each split of image. Set as the input size by default
    num_splits = [
        math.ceil(size / max_split_size) for size in img_sizes
    ]  # number of splits each scale
    input_multiscale = []
    for size, num_split in zip(img_sizes, num_splits):
        x = F.interpolate(input.to(torch.float32), size=size, mode="bicubic").to(input.dtype)
        x = split_chessboard(x, num_split=num_split)
        input_multiscale.append(x)

    # run feedforward on each scale
    outs_multiscale = [
        batched_forward(model, x, b) if split_forward else model(x) for x in input_multiscale
    ]
    if num_prefix_token > 0:
        outs_prefix_multiscale = [out[:, :num_prefix_token] for out in outs_multiscale]
        outs_multiscale = [out[:, num_prefix_token:] for out in outs_multiscale]
    if output_shape == "bnc":
        outs_multiscale = [
            rearrange(
                out, "b (h w) c -> b c h w", h=int(out.shape[1] ** 0.5), w=int(out.shape[1] ** 0.5)
            )
            for out in outs_multiscale
        ]

    # merge outputs of different splits for each scale separately
    outs_multiscale = [
        merge_chessboard(out, num_split=num_split)
        for num_split, out in zip(num_splits, outs_multiscale)
    ]

    # interpolate outputs from different scales and concat together
    output_size = outs_multiscale[resize_output_to_idx].shape[-2]
    out = torch.cat(
        [
            F.interpolate(outs_multiscale[i].to(torch.float32), size=output_size, mode="area").to(
                outs_multiscale[i].dtype
            )
            for i in range(len(outs_multiscale))
        ],
        dim=1,
    )
    if output_shape == "bnc":
        out = rearrange(out, "b c h w -> b (h w) c")
    if num_prefix_token > 0:
        # take the mean of prefix tokens from different splits for each scale
        outs_prefix_multiscale = [
            torch.stack(out.split(b, dim=0), dim=0).mean(dim=0) for out in outs_prefix_multiscale
        ]
        out_prefix_multiscale = torch.cat(outs_prefix_multiscale, dim=-1)
        out = torch.cat([out_prefix_multiscale, out], dim=1)

    return out