Spaces:
Running
on
Zero
Running
on
Zero
File size: 34,710 Bytes
bc752b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 |
import copy
import json
import math
import os
import random
from dataclasses import dataclass, field
from typing import Dict, Optional, Sequence
import numpy as np
import torch
import transformers
from PIL import Image
from torch.nn.utils.rnn import pad_sequence
from torch.utils.data import Dataset
from decord import VideoReader, cpu
from vita import conversation as conversation_lib
from vita.config import AudioFolder, DataConfig, FolderDict
from vita.constants import (
DEFAULT_AUDIO_TOKEN,
DEFAULT_IMAGE_TOKEN,
DEFAULT_VIDEO_TOKEN,
IGNORE_INDEX,
MAX_IMAGE_LENGTH,
MIN_IMAGE_LENGTH,
)
from vita.util.mm_utils import tokenizer_image_audio_token, tokenizer_image_token
@dataclass
class DataArguments:
lazy_preprocess: bool = False
is_multimodal: bool = True
image_folder: Optional[str] = field(default=None)
image_aspect_ratio: str = field(default=None)
dataset_use: str = field(default="temp")
def preprocess_multimodal(
sources: Sequence[str], data_args: DataArguments, image_token_num=1, audio_lens: int = 0
) -> Dict:
is_multimodal = data_args.is_multimodal
if not is_multimodal:
return sources
for source in sources:
for sentence in source:
if DEFAULT_IMAGE_TOKEN in sentence["value"] or DEFAULT_VIDEO_TOKEN in sentence["value"]:
sentence["value"] = (
sentence["value"]
.replace(DEFAULT_IMAGE_TOKEN + "\n", DEFAULT_IMAGE_TOKEN)
.strip()
)
sentence["value"] = (
sentence["value"]
.replace("\n" + DEFAULT_IMAGE_TOKEN, DEFAULT_IMAGE_TOKEN)
.strip()
)
if sentence["value"].endswith(DEFAULT_IMAGE_TOKEN):
IMAGE_TOKEN_NUM = sentence["value"].count(DEFAULT_IMAGE_TOKEN)
sentence["value"] = (
sentence["value"].replace(DEFAULT_IMAGE_TOKEN * IMAGE_TOKEN_NUM, "").strip()
)
sentence["value"] = DEFAULT_IMAGE_TOKEN * IMAGE_TOKEN_NUM + sentence["value"]
sentence["value"] = sentence["value"].strip()
if sentence["value"].endswith(DEFAULT_VIDEO_TOKEN):
VIDEO_TOKEN_NUM = sentence["value"].count(DEFAULT_VIDEO_TOKEN)
sentence["value"] = (
sentence["value"].replace(DEFAULT_VIDEO_TOKEN * VIDEO_TOKEN_NUM, "").strip()
)
sentence["value"] = DEFAULT_VIDEO_TOKEN * VIDEO_TOKEN_NUM + sentence["value"]
sentence["value"] = sentence["value"].strip()
if "mmtag" in conversation_lib.default_conversation.version:
sentence["value"] = sentence["value"].replace(
DEFAULT_IMAGE_TOKEN, "<Image>" + DEFAULT_IMAGE_TOKEN + "</Image>"
)
IMAGE_TOKEN_NUM = sentence["value"].count(DEFAULT_IMAGE_TOKEN)
if IMAGE_TOKEN_NUM > MAX_IMAGE_LENGTH:
sentence["value"] = (
sentence["value"]
.replace(
DEFAULT_IMAGE_TOKEN * IMAGE_TOKEN_NUM,
DEFAULT_IMAGE_TOKEN * MAX_IMAGE_LENGTH,
)
.strip()
)
replace_token, vid_replace_token, audio_replace_token = (
DEFAULT_IMAGE_TOKEN,
DEFAULT_IMAGE_TOKEN * image_token_num,
DEFAULT_AUDIO_TOKEN,
) # * audio_lens
sentence["value"] = sentence["value"].replace(DEFAULT_IMAGE_TOKEN, replace_token + "\n")
sentence["value"] = sentence["value"].replace(
DEFAULT_VIDEO_TOKEN, vid_replace_token + "\n"
)
sentence["value"] = sentence["value"].replace(
DEFAULT_AUDIO_TOKEN + "\n", audio_replace_token
)
sentence["value"] = sentence["value"].replace("\n\n", "\n")
return sources
def preprocess_mixtral_zh(
sources,
tokenizer: transformers.PreTrainedTokenizer,
has_image: bool = False,
has_audio: bool = False,
) -> Dict:
conv = conversation_lib.default_conversation.copy()
roles = {"human": conv.roles[0], "gpt": conv.roles[1]}
# Apply prompt templates
conversations = []
for i, source in enumerate(sources):
if roles[source[0]["from"]] != conv.roles[0]:
# Skip the first one if it is not from human
source = source[1:]
conv.messages = []
for j, sentence in enumerate(source):
role = roles[sentence["from"]]
assert role == conv.roles[j % 2], f"{i}"
conv.append_message(role, sentence["value"])
conversations.append(conv.get_prompt())
# Tokenize conversations
if has_image and not has_audio:
input_ids = torch.stack(
[
tokenizer_image_token(prompt, tokenizer, return_tensors="pt")
for prompt in conversations
],
dim=0,
)
elif has_image and has_audio:
input_ids = torch.stack(
[
tokenizer_image_audio_token(prompt, tokenizer, return_tensors="pt")
for prompt in conversations
],
dim=0,
)
elif not has_image and has_audio:
input_ids = torch.stack(
[
tokenizer_image_audio_token(prompt, tokenizer, return_tensors="pt")
for prompt in conversations
],
dim=0,
)
else:
input_ids = tokenizer(
conversations,
return_tensors="pt",
padding="longest",
max_length=tokenizer.model_max_length,
truncation=True,
).input_ids
targets = input_ids.clone()
assert conv.sep_style == conversation_lib.SeparatorStyle.MixtralZh
# Mask targets
sep = conv.sep + "\n" + conv.roles[1] + ":"
sep2_2 = "\n" + conv.roles[0] + ":"
sep2 = conv.sep2 + sep2_2
for conversation, target in zip(conversations, targets):
total_len = int(target.ne(tokenizer.pad_token_id).sum())
rounds = conversation.split(sep2)
rounds = [rounds[0] + sep2 + rounds[1]] + rounds[2:]
cur_len = 1
end_token_cnt = 0
target[:cur_len] = IGNORE_INDEX
for i, rou in enumerate(rounds):
if rou == "":
break
if i > 0:
rou = sep2_2 + rou
parts = rou.split(sep)
if len(parts) != 2:
break
parts[0] += sep
if has_image and not has_audio:
round_len = len(tokenizer_image_token(rou, tokenizer))
instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 1
elif has_image and has_audio:
round_len = len(tokenizer_image_audio_token(rou, tokenizer))
instruction_len = len(tokenizer_image_audio_token(parts[0], tokenizer)) - 1
elif not has_image and has_audio:
round_len = len(tokenizer_image_audio_token(rou, tokenizer))
instruction_len = len(tokenizer_image_audio_token(parts[0], tokenizer)) - 1
else:
round_len = len(tokenizer(rou).input_ids)
instruction_len = len(tokenizer(parts[0]).input_ids) - 2
target[cur_len : cur_len + instruction_len] = IGNORE_INDEX
end_token_cnt += 1
cur_len += round_len
cur_len = cur_len - 1
target[cur_len:] = IGNORE_INDEX
if tokenizer.pad_token_id == tokenizer.eos_token_id:
cur_len -= end_token_cnt
if cur_len < tokenizer.model_max_length:
if cur_len != total_len:
target[:] = IGNORE_INDEX
print(f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." f" (ignored)")
# print(f"YOU NEED GO TO DEBUG THIS DATA ITEM: {conversations}")
return dict(
input_ids=input_ids,
labels=targets,
)
def preprocess_plain(
sources: Sequence[str],
tokenizer: transformers.PreTrainedTokenizer,
) -> Dict:
# add end signal and concatenate together
conversations = []
for source in sources:
assert len(source) == 2
assert DEFAULT_IMAGE_TOKEN in source[0]["value"]
source[0]["value"] = DEFAULT_IMAGE_TOKEN
conversation = (
source[0]["value"] + source[1]["value"] + conversation_lib.default_conversation.sep
)
conversations.append(conversation)
# tokenize conversations
input_ids = [
tokenizer_image_token(prompt, tokenizer, return_tensors="pt") for prompt in conversations
]
targets = copy.deepcopy(input_ids)
for target, source in zip(targets, sources):
tokenized_len = len(tokenizer_image_token(source[0]["value"], tokenizer))
target[:tokenized_len] = IGNORE_INDEX
return dict(input_ids=input_ids, labels=targets)
def preprocess(
sources: Sequence[str],
tokenizer: transformers.PreTrainedTokenizer,
has_image: bool = False,
has_audio: bool = False,
) -> Dict:
if conversation_lib.default_conversation.sep_style == conversation_lib.SeparatorStyle.PLAIN:
return preprocess_plain(sources, tokenizer)
if conversation_lib.default_conversation.version == "mixtral_zh":
return preprocess_mixtral_zh(sources, tokenizer, has_image=has_image, has_audio=has_audio)
def _get_rawvideo_dec(
video_path,
image_processor,
max_frames=32,
min_frames=4,
image_resolution=384,
video_framerate=1,
s=None,
e=None,
image_aspect_ratio="pad",
):
# speed up video decode via decord.
video_mask = np.zeros(max_frames, dtype=np.int64)
max_video_length = 0
# T x 3 x H x W
video = np.zeros((max_frames, 3, image_resolution, image_resolution), dtype=np.float64)
if s is None:
start_time, end_time = None, None
else:
start_time = int(s)
end_time = int(e)
start_time = start_time if start_time >= 0.0 else 0.0
end_time = end_time if end_time >= 0.0 else 0.0
if start_time > end_time:
start_time, end_time = end_time, start_time
elif start_time == end_time:
end_time = start_time + 1
if os.path.exists(video_path):
vreader = VideoReader(video_path, ctx=cpu(0))
else:
print(video_path)
raise FileNotFoundError
fps = vreader.get_avg_fps()
f_start = 0 if start_time is None else int(start_time * fps)
f_end = int(min(1000000000 if end_time is None else end_time * fps, len(vreader) - 1))
num_frames = f_end - f_start + 1
if num_frames > 0:
# T x 3 x H x W
sample_fps = int(video_framerate)
t_stride = int(round(float(fps) / sample_fps))
all_pos = list(range(f_start, f_end + 1, t_stride))
if len(all_pos) > max_frames:
sample_pos = [
all_pos[_] for _ in np.linspace(0, len(all_pos) - 1, num=max_frames, dtype=int)
]
elif len(all_pos) < min_frames:
sample_pos = [
all_pos[_] for _ in np.linspace(0, len(all_pos) - 1, num=min_frames, dtype=int)
]
else:
sample_pos = all_pos
patch_images = [Image.fromarray(f) for f in vreader.get_batch(sample_pos).asnumpy()]
if image_aspect_ratio == "pad":
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
patch_images = [
expand2square(i, tuple(int(x * 255) for x in image_processor.image_mean))
for i in patch_images
]
patch_images = [
image_processor.preprocess(i, return_tensors="pt")["pixel_values"][0]
for i in patch_images
]
else:
patch_images = [
image_processor.preprocess(i, return_tensors="pt")["pixel_values"][0]
for i in patch_images
]
# patch_images = [image_processor.preprocess(img, return_tensors='pt')['pixel_values'][0] for img in patch_images]
slice_len = len(patch_images)
return patch_images, slice_len
max_video_length = max_video_length if max_video_length > slice_len else slice_len
if slice_len < 1:
pass
else:
while len(patch_images) < max_frames:
patch_images.append(torch.zeros((3, image_resolution, image_resolution)))
# video[:slice_len, ...] = patch_images
else:
print("video path: {} error.".format(video_path))
video_mask[:max_video_length] = [1] * max_video_length
return patch_images, video_mask
class LazySupervisedDataset(Dataset):
"""Dataset for supervised fine-tuning."""
def __init__(self, tokenizer: transformers.PreTrainedTokenizer, data_args: DataArguments):
super(LazySupervisedDataset, self).__init__()
dataset_list = DataConfig[str(data_args.dataset_use)]
print(dataset_list)
self.max_length = MAX_IMAGE_LENGTH
list_data_dict = []
self.folder_dict = {}
for i in dataset_list:
list_data_dict += json.load(open(i["chat_path"], "r"))
image_folder = [folder for folder in i if folder is not "chat_path"]
for folder in image_folder:
if folder not in self.folder_dict:
self.folder_dict[folder] = i[folder]
for key in FolderDict.keys():
if key not in self.folder_dict:
self.folder_dict[key] = FolderDict[key]
random.shuffle(list_data_dict)
self.tokenizer = tokenizer
self.list_data_dict = list_data_dict
self.data_args = data_args
def __len__(self):
return len(self.list_data_dict)
# @property
# def lengths(self):
# length_list = []
# for sample in self.list_data_dict:
# img_tokens = 128 if 'image' in sample else 0
# length_list.append(sum(len(conv['value'].split()) for conv in sample['conversations']) + img_tokens)
# return length_list
@property
def modality_lengths(self):
length_list = []
for sample in self.list_data_dict:
cur_len = sum(len(conv["value"].split()) for conv in sample["conversations"])
cur_len = cur_len if ("image" in sample or "video" in sample) else -cur_len
length_list.append(cur_len)
return length_list
def __getitem__(self, i) -> Dict[str, torch.Tensor]:
sources = self.list_data_dict[i]
if isinstance(i, int):
sources = [sources]
assert len(sources) == 1, "Don't know why it is wrapped to a list" # FIXME
if "image" in sources[0] and "audio" not in sources[0]:
image_file = self.list_data_dict[i]["image"]
set_id = self.list_data_dict[i].get("set", None)
file = image_file[0] if type(image_file) is list else image_file
processor = self.data_args.image_processor
if type(image_file) is list:
assert type(set_id) is list
if len(image_file) != len(set_id):
assert len(set(set_id)) == 1
image = [
Image.open(
os.path.join(self.folder_dict[set_id[k]], file.replace("\\", "/"))
).convert("RGB")
for k, file in enumerate(image_file)
]
if self.data_args.image_aspect_ratio == "pad":
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
image = [
expand2square(i, tuple(int(x * 255) for x in processor.image_mean))
for i in image
]
image = [
processor.preprocess(i, return_tensors="pt")["pixel_values"][0]
for i in image
]
else:
image = [
processor.preprocess(i, return_tensors="pt")["pixel_values"][0]
for i in image
]
else:
image_folder = self.folder_dict[set_id]
image = Image.open(
os.path.join(image_folder, image_file.replace("\\", "/"))
).convert("RGB")
if self.data_args.image_aspect_ratio == "pad":
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
image = expand2square(image, tuple(int(x * 255) for x in processor.image_mean))
image = processor.preprocess(image, return_tensors="pt")["pixel_values"][0]
else:
image = processor.preprocess(image, return_tensors="pt")["pixel_values"][0]
sources = preprocess_multimodal(
copy.deepcopy([e["conversations"] for e in sources]), self.data_args
)
data_dict = preprocess(sources, self.tokenizer, has_image=True)
elif "image" in sources[0] and "audio" in sources[0]:
image_file = self.list_data_dict[i]["image"]
set_id = self.list_data_dict[i].get("set", None)
file = image_file[0] if type(image_file) is list else image_file
audio_file = self.list_data_dict[i]["audio"]
processor = self.data_args.image_processor
if type(image_file) is list:
assert type(set_id) is list
if len(image_file) != len(set_id): # 多图数据
assert len(set(set_id)) == 1
image = [
Image.open(
os.path.join(self.folder_dict[set_id[k]], file.replace("\\", "/"))
).convert("RGB")
for k, file in enumerate(image_file)
]
if self.data_args.image_aspect_ratio == "pad":
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
image = [
expand2square(i, tuple(int(x * 255) for x in processor.image_mean))
for i in image
]
image = [
processor.preprocess(i, return_tensors="pt")["pixel_values"][0]
for i in image
]
else:
image = [
processor.preprocess(i, return_tensors="pt")["pixel_values"][0]
for i in image
]
else:
image_folder = self.folder_dict[set_id]
image = Image.open(
os.path.join(image_folder, image_file.replace("\\", "/"))
).convert("RGB")
if self.data_args.image_aspect_ratio == "pad":
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height) // 2))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width) // 2, 0))
return result
image = expand2square(image, tuple(int(x * 255) for x in processor.image_mean))
image = processor.preprocess(image, return_tensors="pt")["pixel_values"][0]
else:
image = processor.preprocess(image, return_tensors="pt")["pixel_values"][0]
if type(audio_file) is list:
# if type(set_id) is list:
# audio_folder = self.folder_dict[set_id[0]+'_audio']
# else:
# audio_folder = self.folder_dict[set_id+'_audio']
audio_folder = AudioFolder
assert len(audio_file) > 0, "audio_file为列表时不能为空"
audio = []
audio_for_llm_lens = []
audio_length = []
for file in audio_file:
try:
a, a_llm = self.data_args.audio_processor.process(
os.path.join(audio_folder, "audio", file)
)
except:
print(f"File {os.path.join(audio_folder, 'audio', file)} not OK!!!!!")
audio.append(a)
audio_for_llm_lens.append(a_llm)
audio_length.append(a.shape[0])
else:
# audio_folder = self.folder_dict[set_id+'_audio']
audio_folder = AudioFolder
assert audio_file, "audio_file不能为空"
audio, audio_for_llm_lens = self.data_args.audio_processor.process(
os.path.join(audio_folder, "audio", audio_file)
)
audio_length = audio.shape[0]
sources = preprocess_multimodal(
copy.deepcopy([e["conversations"] for e in sources]),
self.data_args,
audio_lens=audio_for_llm_lens,
)
data_dict = preprocess(sources, self.tokenizer, has_image=True, has_audio=True)
data_dict["audio_lengths"] = audio_length
data_dict["audio_lengths_for_llm"] = audio_for_llm_lens
elif "video" in sources[0] and "audio" not in sources[0]:
video_file = self.list_data_dict[i]["video"]
video_id = self.list_data_dict[i]["id"]
set_id = self.list_data_dict[i].get("set", None)
processor = self.data_args.image_processor
if "height" in processor.size.keys():
image_size = processor.size["height"]
elif "shortest_edge" in processor.size.keys():
image_size = processor.size["shortest_edge"]
else:
raise NotImplementedError(f"Please use correct key to use processor size!")
video_folder = self.folder_dict[set_id]
image, image_token_num = _get_rawvideo_dec(
os.path.join(video_folder, video_file),
processor,
max_frames=MAX_IMAGE_LENGTH,
min_frames=MIN_IMAGE_LENGTH,
image_resolution=image_size,
)
sources = preprocess_multimodal(
copy.deepcopy([e["conversations"] for e in sources]),
self.data_args,
image_token_num=image_token_num,
)
data_dict = preprocess(sources, self.tokenizer, has_image=True, has_audio=False)
elif "video" in sources[0] and "audio" in sources[0]:
video_file = self.list_data_dict[i]["video"]
video_id = self.list_data_dict[i]["id"]
set_id = self.list_data_dict[i].get("set", None)
audio_file = self.list_data_dict[i]["audio"]
processor = self.data_args.image_processor
if "height" in processor.size.keys():
image_size = processor.size["height"]
elif "shortest_edge" in processor.size.keys():
image_size = processor.size["shortest_edge"]
else:
raise NotImplementedError(f"Please use correct key to use processor size!")
video_folder = self.folder_dict[set_id]
# audio_folder = self.folder_dict[set_id+'_audio']
audio_folder = AudioFolder
image, image_token_num = _get_rawvideo_dec(
os.path.join(video_folder, video_file),
processor,
max_frames=MAX_IMAGE_LENGTH,
min_frames=MIN_IMAGE_LENGTH,
image_resolution=image_size,
)
if type(audio_file) is list:
assert len(audio_file) > 0, "audio_file为列表时不能为空"
audio = []
audio_for_llm_lens = []
audio_length = []
for file in audio_file:
a, a_llm = self.data_args.audio_processor.process(
os.path.join(audio_folder, "audio", file)
)
audio.append(a)
audio_for_llm_lens.append(a_llm)
audio_length.append(a.shape[0])
else:
assert audio_file, "audio_file不能为空"
audio, audio_for_llm_lens = self.data_args.audio_processor.process(
os.path.join(audio_folder, "audio", audio_file)
)
audio_length = audio.shape[0]
sources = preprocess_multimodal(
copy.deepcopy([e["conversations"] for e in sources]),
self.data_args,
image_token_num=image_token_num,
audio_lens=audio_for_llm_lens,
)
data_dict = preprocess(sources, self.tokenizer, has_image=True, has_audio=True)
data_dict["audio_lengths"] = audio_length
data_dict["audio_lengths_for_llm"] = audio_for_llm_lens
elif "audio" in sources[0]:
audio_file = self.list_data_dict[i]["audio"]
audio_folder = AudioFolder
if type(audio_file) is list:
assert len(audio_file) > 0, "audio_file为列表时不能为空"
audio = []
audio_for_llm_lens = []
audio_length = []
for file in audio_file:
a, a_llm = self.data_args.audio_processor.process(
os.path.join(audio_folder, "audio", file)
)
audio.append(a)
audio_for_llm_lens.append(a_llm)
audio_length.append(a.shape[0])
else:
assert audio_file, "audio_file不能为空"
audio, audio_for_llm_lens = self.data_args.audio_processor.process(
os.path.join(audio_folder, "audio", audio_file)
)
audio_length = audio.shape[0]
sources = preprocess_multimodal(
copy.deepcopy([e["conversations"] for e in sources]),
self.data_args,
image_token_num=0,
audio_lens=audio_for_llm_lens,
)
data_dict = preprocess(sources, self.tokenizer, has_image=False, has_audio=True)
data_dict["audio_lengths"] = audio_length
data_dict["audio_lengths_for_llm"] = audio_for_llm_lens
else:
sources = copy.deepcopy([e["conversations"] for e in sources])
data_dict = preprocess(sources, self.tokenizer, has_image=False)
if isinstance(i, int):
if "audio" in self.list_data_dict[i]:
data_dict = dict(
input_ids=data_dict["input_ids"][0],
labels=data_dict["labels"][0],
audio_lengths=data_dict["audio_lengths"],
audio_lengths_for_llm=data_dict["audio_lengths_for_llm"],
)
else:
data_dict = dict(input_ids=data_dict["input_ids"][0], labels=data_dict["labels"][0])
# image exist in the data
if "image" in self.list_data_dict[i] or "video" in self.list_data_dict[i]:
data_dict["image"] = image
elif self.data_args.is_multimodal:
# image does not exist in the data, but the model is multimodal
crop_size = self.data_args.image_processor.crop_size
data_dict["image"] = torch.zeros(3, crop_size["height"], crop_size["width"])
if "audio" in self.list_data_dict[i]:
data_dict["audio"] = audio
elif self.data_args.is_multimodal:
data_dict["audio"] = torch.zeros(400, 80)
data_dict["audio_lengths"] = 400
data_dict["audio_lengths_for_llm"] = 60
return data_dict
@dataclass
class DataCollatorForSupervisedDataset(object):
"""Collate examples for supervised fine-tuning."""
tokenizer: transformers.PreTrainedTokenizer
def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]:
input_ids, labels = tuple(
[instance[key] for instance in instances] for key in ("input_ids", "labels")
)
if self.tokenizer.pad_token_id == self.tokenizer.eos_token_id:
for input_id in input_ids:
input_id[input_id == self.tokenizer.eos_token_id] = -300
input_ids = torch.nn.utils.rnn.pad_sequence(
input_ids, batch_first=True, padding_value=self.tokenizer.pad_token_id
)
labels = torch.nn.utils.rnn.pad_sequence(
labels, batch_first=True, padding_value=IGNORE_INDEX
)
input_ids = input_ids[:, : self.tokenizer.model_max_length]
attention_mask = input_ids.ne(self.tokenizer.pad_token_id)
labels = labels[:, : self.tokenizer.model_max_length]
if self.tokenizer.pad_token_id == self.tokenizer.eos_token_id:
for input_id in input_ids:
input_id[input_id == -300] = self.tokenizer.eos_token_id
batch = dict(
input_ids=input_ids,
labels=labels,
attention_mask=attention_mask,
)
if "image" in instances[0]:
images = [instance["image"] for instance in instances]
new_images = []
for image in images:
if type(image) is list:
for i in image:
new_images.append(i)
else:
new_images.append(image)
images = new_images
if all(x is not None and x.shape == images[0].shape for x in images):
batch["images"] = torch.stack(images)
else:
batch["images"] = images
batch["audios"] = {}
if "audio" in instances[0]:
audios = [instance["audio"] for instance in instances]
audio_lengths = [instance["audio_lengths"] for instance in instances]
audio_lengths_for_llm = [instance["audio_lengths_for_llm"] for instance in instances]
new_audios = []
new_audio_lengths = []
new_audio_lengths_for_llm = []
for i, audio in enumerate(audios):
length = audio_lengths[i]
length_for_llm = audio_lengths_for_llm[i]
if type(audio) is list:
for j, a in enumerate(audio):
new_audios.append(a)
new_audio_lengths.append(length[j])
new_audio_lengths_for_llm.append(length_for_llm[j])
else:
new_audios.append(audio)
new_audio_lengths.append(length)
new_audio_lengths_for_llm.append(length_for_llm)
audios = new_audios
audios = pad_sequence(audios, batch_first=True, padding_value=0)
batch["audios"]["audios"] = audios
batch["audios"]["lengths"] = torch.tensor(new_audio_lengths)
batch["audios"]["lengths_for_llm"] = torch.tensor(new_audio_lengths_for_llm)
return batch
def make_supervised_data_module(tokenizer: transformers.PreTrainedTokenizer, data_args) -> Dict:
"""Make dataset and collator for supervised fine-tuning."""
train_dataset = LazySupervisedDataset(tokenizer=tokenizer, data_args=data_args)
data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer)
return dict(train_dataset=train_dataset, eval_dataset=None, data_collator=data_collator)
|