File size: 15,284 Bytes
bc752b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
import os
from typing import Any, Dict, List, Optional, Union

import torch
from torch import nn
from torch.utils.data import Sampler
from transformers import Trainer
from transformers.trainer import (
    ALL_LAYERNORM_LAYERS,
    get_parameter_names,
    has_length,
    is_sagemaker_mp_enabled,
    logger,
)


def maybe_zero_3(param, ignore_status=False, name=None):
    from deepspeed import zero
    from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus

    if hasattr(param, "ds_id"):
        if param.ds_status == ZeroParamStatus.NOT_AVAILABLE:
            if not ignore_status:
                print(name, "no ignore status")
        with zero.GatheredParameters([param]):
            param = param.data.detach().cpu().clone()
    else:
        param = param.detach().cpu().clone()
    return param


def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match):
    to_return = {
        k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match)
    }
    to_return = {k: maybe_zero_3(v, ignore_status=True, name=k).cpu() for k, v in to_return.items()}
    return to_return


def split_to_even_chunks(indices, lengths, num_chunks):
    """
    Split a list of indices into `chunks` chunks of roughly equal lengths.
    """

    if len(indices) % num_chunks != 0:
        return [indices[i::num_chunks] for i in range(num_chunks)]

    num_indices_per_chunk = len(indices) // num_chunks

    chunks = [[] for _ in range(num_chunks)]
    chunks_lengths = [0 for _ in range(num_chunks)]
    for index in indices:
        shortest_chunk = chunks_lengths.index(min(chunks_lengths))
        chunks[shortest_chunk].append(index)
        chunks_lengths[shortest_chunk] += lengths[index]
        if len(chunks[shortest_chunk]) == num_indices_per_chunk:
            chunks_lengths[shortest_chunk] = float("inf")

    return chunks


def get_modality_length_grouped_indices(lengths, batch_size, world_size, generator=None):
    # We need to use torch for the random part as a distributed sampler will set the random seed for torch.
    assert all(l != 0 for l in lengths), "Should not have zero length."
    if all(l > 0 for l in lengths) or all(l < 0 for l in lengths):
        # all samples are in the same modality
        return get_length_grouped_indices(lengths, batch_size, world_size, generator=generator)
    mm_indices, mm_lengths = zip(*[(i, l) for i, l in enumerate(lengths) if l > 0])
    lang_indices, lang_lengths = zip(*[(i, -l) for i, l in enumerate(lengths) if l < 0])

    mm_shuffle = [
        mm_indices[i]
        for i in get_length_grouped_indices(mm_lengths, batch_size, world_size, generator=None)
    ]
    lang_shuffle = [
        lang_indices[i]
        for i in get_length_grouped_indices(lang_lengths, batch_size, world_size, generator=None)
    ]
    megabatch_size = world_size * batch_size
    mm_megabatches = [
        mm_shuffle[i : i + megabatch_size] for i in range(0, len(mm_shuffle), megabatch_size)
    ]
    lang_megabatches = [
        lang_shuffle[i : i + megabatch_size] for i in range(0, len(lang_shuffle), megabatch_size)
    ]

    last_mm = mm_megabatches[-1]
    last_lang = lang_megabatches[-1]
    additional_batch = last_mm + last_lang
    megabatches = mm_megabatches[:-1] + lang_megabatches[:-1]
    megabatch_indices = torch.randperm(len(megabatches), generator=generator)
    megabatches = [megabatches[i] for i in megabatch_indices]

    if len(additional_batch) > 0:
        megabatches.append(sorted(additional_batch))

    return [i for megabatch in megabatches for i in megabatch]


def get_length_grouped_indices(lengths, batch_size, world_size, generator=None, merge=True):
    # We need to use torch for the random part as a distributed sampler will set the random seed for torch.
    indices = torch.randperm(len(lengths), generator=generator)
    megabatch_size = world_size * batch_size
    megabatches = [
        indices[i : i + megabatch_size].tolist() for i in range(0, len(lengths), megabatch_size)
    ]
    megabatches = [
        sorted(megabatch, key=lambda i: lengths[i], reverse=True) for megabatch in megabatches
    ]
    megabatches = [
        split_to_even_chunks(megabatch, lengths, world_size) for megabatch in megabatches
    ]

    return [i for megabatch in megabatches for batch in megabatch for i in batch]


class LengthGroupedSampler(Sampler):
    r"""
    Sampler that samples indices in a way that groups together features of the dataset of roughly the same length while
    keeping a bit of randomness.
    """

    def __init__(
        self,
        batch_size: int,
        world_size: int,
        lengths: Optional[List[int]] = None,
        generator=None,
        group_by_modality: bool = False,
    ):
        if lengths is None:
            raise ValueError("Lengths must be provided.")

        self.batch_size = batch_size
        self.world_size = world_size
        self.lengths = lengths
        self.generator = generator
        self.group_by_modality = group_by_modality

    def __len__(self):
        return len(self.lengths)

    def __iter__(self):
        if self.group_by_modality:
            indices = get_modality_length_grouped_indices(
                self.lengths, self.batch_size, self.world_size, generator=self.generator
            )
        else:
            indices = get_length_grouped_indices(
                self.lengths, self.batch_size, self.world_size, generator=self.generator
            )
        return iter(indices)


class VITATrainer(Trainer):
    def _get_train_sampler(self) -> Optional[torch.utils.data.Sampler]:
        if self.train_dataset is None or not has_length(self.train_dataset):
            return None

        if self.args.group_by_modality_length:
            lengths = self.train_dataset.modality_lengths
            return LengthGroupedSampler(
                self.args.train_batch_size,
                world_size=self.args.world_size * self.args.gradient_accumulation_steps,
                lengths=lengths,
                group_by_modality=True,
            )
        else:
            return super()._get_train_sampler()

    def create_optimizer(self):
        """
        Setup the optimizer.

        We provide a reasonable default that works well. If you want to use something else, you can pass a tuple in the
        Trainer's init through `optimizers`, or subclass and override this method in a subclass.
        """
        if is_sagemaker_mp_enabled():
            return super().create_optimizer()

        opt_model = self.model

        if self.optimizer is None:
            decay_parameters = get_parameter_names(opt_model, ALL_LAYERNORM_LAYERS)
            decay_parameters = [name for name in decay_parameters if "bias" not in name]
            if self.args.mm_projector_lr is not None:
                projector_parameters = [
                    name
                    for name, _ in opt_model.named_parameters()
                    #if "mm_projector" in name or "vision_tower" in name
                    if "vision_tower" in name
                ]
                optimizer_grouped_parameters = [
                    {
                        "params": [
                            p
                            for n, p in opt_model.named_parameters()
                            if (
                                n in decay_parameters
                                and n not in projector_parameters
                                and p.requires_grad
                            )
                        ],
                        "weight_decay": self.args.weight_decay,
                    },
                    {
                        "params": [
                            p
                            for n, p in opt_model.named_parameters()
                            if (
                                n not in decay_parameters
                                and n not in projector_parameters
                                and p.requires_grad
                            )
                        ],
                        "weight_decay": 0.0,
                    },
                    {
                        "params": [
                            p
                            for n, p in opt_model.named_parameters()
                            if (
                                n in decay_parameters
                                and n in projector_parameters
                                and p.requires_grad
                            )
                        ],
                        "weight_decay": self.args.weight_decay,
                        "lr": self.args.mm_projector_lr,
                    },
                    {
                        "params": [
                            p
                            for n, p in opt_model.named_parameters()
                            if (
                                n not in decay_parameters
                                and n in projector_parameters
                                and p.requires_grad
                            )
                        ],
                        "weight_decay": 0.0,
                        "lr": self.args.mm_projector_lr,
                    },
                ]
            else:
                optimizer_grouped_parameters = [
                    {
                        "params": [
                            p
                            for n, p in opt_model.named_parameters()
                            if (n in decay_parameters and p.requires_grad)
                        ],
                        "weight_decay": self.args.weight_decay,
                    },
                    {
                        "params": [
                            p
                            for n, p in opt_model.named_parameters()
                            if (n not in decay_parameters and p.requires_grad)
                        ],
                        "weight_decay": 0.0,
                    },
                ]

            optimizer_cls, optimizer_kwargs = Trainer.get_optimizer_cls_and_kwargs(self.args)

            self.optimizer = optimizer_cls(optimizer_grouped_parameters, **optimizer_kwargs)
            if optimizer_cls.__name__ == "Adam8bit":
                import bitsandbytes

                manager = bitsandbytes.optim.GlobalOptimManager.get_instance()

                skipped = 0
                for module in opt_model.modules():
                    if isinstance(module, nn.Embedding):
                        skipped += sum(
                            {p.data_ptr(): p.numel() for p in module.parameters()}.values()
                        )
                        logger.info(f"skipped {module}: {skipped / 2 ** 20}M params")
                        manager.register_module_override(module, "weight", {"optim_bits": 32})
                        logger.debug(f"bitsandbytes: will optimize {module} in fp32")
                logger.info(f"skipped: {skipped / 2 ** 20}M params")

        return self.optimizer

    def _save_checkpoint(self, model, trial, metrics=None):
        # print('model.model.audio_encoder.adpter.project.weight')
        # print(model.model.audio_encoder.adpter.project.weight)
        # print('model.model.audio_encoder.adpter.project.weight.requires_grad')
        # print(model.model.audio_encoder.adpter.project.weight.requires_grad)
        if getattr(self.args, "tune_mm_mlp_adapter", False) or getattr(self.args, "tune_audio_mlp_adapter", False):
            if getattr(self.args, "tune_mm_mlp_adapter", False):
                from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR

                checkpoint_folder = f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}"

                run_dir = self._get_output_dir(trial=trial)
                output_dir = os.path.join(run_dir, checkpoint_folder)

                # Only save Adapter
                keys_to_match = ["mm_projector", "vision_resampler"]
                if getattr(self.args, "use_im_start_end", False):
                    keys_to_match.extend(["embed_tokens", "embed_in"])

                weight_to_save = get_mm_adapter_state_maybe_zero_3(
                    self.model.named_parameters(), keys_to_match
                )

                if self.args.local_rank == 0 or self.args.local_rank == -1:
                    self.model.config.save_pretrained(output_dir)
                    torch.save(weight_to_save, os.path.join(output_dir, f"mm_projector.bin"))
            if getattr(self.args, "tune_audio_mlp_adapter", False):
                from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR

                checkpoint_folder = f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}"

                run_dir = self._get_output_dir(trial=trial)
                output_dir = os.path.join(run_dir, checkpoint_folder)

                # Only save Adapter
                keys_to_match = ["audio_encoder.adpter"]
                if getattr(self.args, "use_im_start_end", False):
                    keys_to_match.extend(["embed_tokens", "embed_in"])

                weight_to_save = get_mm_adapter_state_maybe_zero_3(
                    self.model.named_parameters(), keys_to_match
                )

                if self.args.local_rank == 0 or self.args.local_rank == -1:
                    self.model.config.save_pretrained(output_dir)
                    torch.save(weight_to_save, os.path.join(output_dir, f"audio_adpter.bin"))
        else:
            super(VITATrainer, self)._save_checkpoint(model, trial, metrics)

    def _save(self, output_dir: Optional[str] = None, state_dict=None):
        if getattr(self.args, "tune_mm_mlp_adapter", False) or getattr(self.args, "tune_audio_mlp_adapter", False):
            pass
        else:
            super(VITATrainer, self)._save(output_dir, state_dict)

    def training_step(
        self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]
    ) -> torch.Tensor:
        """
        Perform a training step on a batch of inputs.
        Print

        Subclass and override to inject custom behavior.

        Args:
            model (`nn.Module`):
                The model to train.
            inputs (`Dict[str, Union[torch.Tensor, Any]]`):
                The inputs and targets of the model.

                The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
                argument `labels`. Check your model's documentation for all accepted arguments.

        Return:
            `torch.Tensor`: The tensor with training loss on this batch.
        """
        tr_loss_step = super().training_step(model, inputs)
        return tr_loss_step
        #try:
           #import pdb; pdb.set_trace()
           #tr_loss_step = super().training_step(model, inputs)
           #return tr_loss_step
        #except Exception as e:
           #print('------------------------------------------------len of images------------------------------------------------')
           #print(len(inputs['images']))
           #print('------------------------------------------------input_ids------------------------------------------------')
           #print(inputs['input_ids'].tolist())
           #print(e)