File size: 17,036 Bytes
bc752b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import torch
import math
import torch.nn as nn
import torch.nn.functional as F

from typing import Dict, List, Tuple, Optional, Union
from transformers import LlamaConfig
from transformers.models.llama.modeling_llama import LlamaDecoderLayer, LlamaRMSNorm, LlamaRotaryEmbedding
from transformers.cache_utils import DynamicCache

from vita.model.vita_tts.encoder.encoder import add_encoder_args
from vita.model.vita_tts.masks import *

IGNORE_ID = -1

class CrossEntropyLoss(torch.nn.Module):
    def __init__(self, ignore_index=-1):
        super(CrossEntropyLoss, self).__init__()
        self.criterion = torch.nn.CrossEntropyLoss(reduction='sum', ignore_index=ignore_index)
        
    def forward(self, logits, target, target_subsampling_factor=1):
        """
        logits: B*T1*D
        target: B*T2
        """
        logits = logits[:, :target.shape[1], :]
        logits = logits.transpose(1, 2)
        target = target.to(torch.long)
        loss = self.criterion(logits, target)
        return loss

class LLM2TTSCodecAR(torch.nn.Module):
    """E2E module.

    Args:
        idim (int): dimension of inputs
        odim (int): dimension of outputs
        args (namespace): argument Namespace containing options

    """

    @staticmethod
    def add_arguments(parser):
        """Extend arguments for transducer."""
        group = parser.add_argument_group("TDNN model setting")

        group.add_argument('--encoder-pre-norm-type',
                           default='ln', type=str, help="Type of input norm.")
        group.add_argument('--encoder-drop-rate', default=0.0,
                           type=float, help="Dropout rate for output.")
        group.add_argument('--encoder-criterion', default='cross-entropy',
                           type=str, help="Criterion for output")
        group.add_argument('--encoder-upsample-rate', default=1, type=int)
        group.add_argument('--kv-cache-prefix-finetune', default=0, type=int)

        group = add_encoder_args(group)

        return parser

    def __init__(self, idim, odim, args):
        """Initialize transducer modules.

        Args:
            idim (int): dimension of inputs
            odim (int): dimension of outputs
            args (Namespace): argument Namespace containing options

        """
        super(LLM2TTSCodecAR, self).__init__()
        self.idim = args.idim
        self.odim = args.odim
        self.encoder_pre_norm_type = args.encoder_pre_norm_type
        self.encoder_drop_rate = args.encoder_drop_rate
        self.encoder_criterion = args.encoder_criterion
        self.encoder_upsample_rate = args.encoder_upsample_rate
        self.reporter = None

        self.vocab_size = self.odim
        config = LlamaConfig(vocab_size=self.vocab_size + 4, hidden_size=args.transformer_attention_dim, 
                            intermediate_size=args.transformer_linear_units, 
                            num_hidden_layers=args.transformer_num_blocks, 
                            num_attention_heads=args.transformer_attention_heads, max_position_embeddings=2048, 
                            bos_token_id=self.vocab_size + 1, 
                            eos_token_id=self.vocab_size + 2, pad_token_id=self.vocab_size + 3,
                            attention_dropout=args.transformer_dropout_rate)

        self.embedding = nn.Embedding(self.vocab_size + 4, self.idim, padding_idx=self.vocab_size + 3)
        self.init_pre_nn(config)

        self.layers = nn.ModuleList(
            [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
        )
        self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.rotary_emb = LlamaRotaryEmbedding(config=config)

        self.dropout = nn.Dropout(p=self.encoder_drop_rate)
        self.out_fnn = nn.Linear(args.encoder_output_dim, self.vocab_size + 4)

        self.kv_cache_prefix_finetune = args.kv_cache_prefix_finetune
        if self.kv_cache_prefix_finetune:
            self.init_kv_cache_prefix(config)
            self.embedding.eval()
            self.layers.eval()
            self.norm.eval()
            self.rotary_emb.eval()
            self.out_fnn.eval()
            for (name, param) in self.embedding.named_parameters():
                param.requires_grad = False
            for (name, param) in self.layers.named_parameters():
                param.requires_grad = False
            for (name, param) in self.norm.named_parameters():
                param.requires_grad = False
            for (name, param) in self.rotary_emb.named_parameters():
                param.requires_grad = False
            for (name, param) in self.out_fnn.named_parameters():
                param.requires_grad = False

        if self.encoder_criterion == 'ce':
            self.criterion = CrossEntropyLoss(ignore_index=self.vocab_size + 3)
    
    def init_kv_cache_prefix(self, config):
        self.layers_prefix = nn.ModuleList(
            [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
        )
        self.rotary_emb_prefix = LlamaRotaryEmbedding(config=config)
    
    def kv_cache_prefix_forward(self, prefix, prefix_lens, past_key_values):
        inputs_embeds = prefix
        past_seen_tokens = 0
        cache_position = torch.arange(past_seen_tokens, past_seen_tokens + \
                                      inputs_embeds.shape[1], device=inputs_embeds.device)
        position_ids = cache_position.unsqueeze(0)
        hidden_states = inputs_embeds
        position_embeddings = self.rotary_emb_prefix(hidden_states, position_ids)
        next_decoder_cache = None
        batch_size, max_len, _ = prefix.size()
        input_mask = torch.zeros(batch_size, max_len, max_len, dtype=torch.bool, device=prefix.device)
        for i in range(batch_size):
            input_mask[i, :prefix_lens[i], :prefix_lens[i]] = True
        attention_mask = ~(input_mask.unsqueeze(1)) * torch.finfo(inputs_embeds.dtype).min
        for decoder_layer in self.layers_prefix:
            layer_outputs = decoder_layer(
                hidden_states,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_value=past_key_values,
                output_attentions=False,
                use_cache=True,
                cache_position=None,
                position_embeddings=position_embeddings,
            )
            hidden_states = layer_outputs[0]
            next_decoder_cache = layer_outputs[1]
        past_key_values = next_decoder_cache
    
    def init_pre_nn(self, config):
        self.layers_pre_nn = nn.ModuleList(
            [LlamaDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers // 2)]
        )
        self.rotary_emb_pre_nn = LlamaRotaryEmbedding(config=config)
    
    def pre_nn_forward(self, hidden, hidden_lens):
        inputs_embeds = hidden
        past_seen_tokens = 0
        cache_position = torch.arange(past_seen_tokens, past_seen_tokens + \
                                      inputs_embeds.shape[1], device=inputs_embeds.device)
        position_ids = cache_position.unsqueeze(0)
        hidden_states = inputs_embeds
        position_embeddings = self.rotary_emb_pre_nn(hidden_states, position_ids)
        next_decoder_cache = None
        batch_size, max_len, _ = hidden.size()
        input_mask = torch.zeros(batch_size, max_len, max_len, dtype=torch.bool, device=hidden.device)
        for i in range(batch_size):
            input_mask[i, :hidden_lens[i], :hidden_lens[i]] = True
        attention_mask = ~(input_mask.unsqueeze(1)) * torch.finfo(inputs_embeds.dtype).min
        for decoder_layer in self.layers_pre_nn:
            layer_outputs = decoder_layer(
                hidden_states,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_value=None,
                output_attentions=False,
                use_cache=False,
                cache_position=None,
                position_embeddings=position_embeddings,
            )
            hidden_states = layer_outputs[0]
        return hidden_states

    def forward(self, batch):
        llm_hidden = batch['x']
        llm_hidden_lens = batch['x_lens']
        y = batch['y']
        y[y == IGNORE_ID] = self.vocab_size + 3
        y_lens = batch['y_lens']
        past_key_values = DynamicCache.from_legacy_cache(None)

        if self.kv_cache_prefix_finetune:
            self.kv_cache_prefix_forward(batch['x_prefix'], batch['x_prefix_lens'], past_key_values)

        # text_ids: (batch_size, max_len)
        batch_size, max_len = y.size()

        # Create bos, sos and eos tokens
        bos_token = torch.full((batch_size, 1), self.vocab_size, dtype=torch.long, device=y.device)
        sos_token = torch.full((batch_size, 1), self.vocab_size + 1, dtype=torch.long, device=y.device)
        eos_token = torch.full((batch_size, 1), self.vocab_size + 2, dtype=torch.long, device=y.device)
        padding_token = torch.full((batch_size, 1), self.vocab_size + 3, dtype=torch.long, device=y.device)

        # Pass through pre_nn
        llm_hidden = self.pre_nn_forward(llm_hidden, llm_hidden_lens)

        # Concat bos embedding
        bos_emb = self.embedding(bos_token)
        llm_hidden = torch.cat([bos_emb, llm_hidden], dim=1)
        llm_hidden_lens = llm_hidden_lens + 1

        # Create input x with sos token at the beginning
        x = torch.cat([sos_token, y], dim=1)  # (batch_size, max_len + 1)
        
        # Create output y with eos token at the end
        y = torch.cat([y, padding_token], dim=1)
        eos_positions = torch.arange(max_len + 1, device=y.device).expand(batch_size, max_len + 1) \
                        == y_lens.unsqueeze(1)
        y = y.masked_scatter(eos_positions, eos_token.expand_as(y)[eos_positions])

        # Embed the input sequence
        x_emb = self.embedding(x)  # (batch_size, max_len + 1, d_model)

        # compute masks
        if self.kv_cache_prefix_finetune:
            x_prefix = batch['x_prefix']
            x_prefix_lens = batch['x_prefix_lens']
            input_lens = llm_hidden.size(1) + max_len + 1
            input_mask = torch.zeros(batch_size, input_lens, x_prefix.size(1) + input_lens, \
                                     dtype=torch.bool, device=x_emb.device)
            for i in range(batch_size):
                input_mask[i, :llm_hidden_lens[i], :x_prefix_lens[i]] = True
                input_mask[i, :llm_hidden_lens[i], x_prefix.size(1): x_prefix.size(1) + llm_hidden_lens[i]] = True
                input_mask[i, llm_hidden.size(1): llm_hidden.size(1) + y_lens[i] + 1, :x_prefix_lens[i]] = True
                input_mask[i, llm_hidden.size(1): llm_hidden.size(1) + y_lens[i] + 1, \
                           x_prefix.size(1): x_prefix.size(1) + llm_hidden_lens[i]] = True
                input_mask[i, llm_hidden.size(1): llm_hidden.size(1) + y_lens[i] + 1, \
                           x_prefix.size(1) + llm_hidden.size(1): x_prefix.size(1) + \
                                                                  llm_hidden.size(1) + y_lens[i] + 1] \
                           = subsequent_mask(y_lens[i] + 1, x_emb.device)
        else:
            input_lens = llm_hidden.size(1) + max_len + 1
            input_mask = torch.zeros(batch_size, input_lens, input_lens, dtype=torch.bool, device=x_emb.device)
            for i in range(batch_size):
                input_mask[i, :llm_hidden_lens[i], :llm_hidden_lens[i]] = True
                input_mask[i, llm_hidden.size(1): llm_hidden.size(1) + y_lens[i] + 1, :llm_hidden_lens[i]] = True
                input_mask[i, llm_hidden.size(1): llm_hidden.size(1) + y_lens[i] + 1, \
                           llm_hidden.size(1): llm_hidden.size(1) + y_lens[i] + 1] \
                           = subsequent_mask(y_lens[i] + 1, x_emb.device)

        # Pass through the transformer
        inputs_embeds = torch.cat([llm_hidden, x_emb], 1)
        llm_hidden = self.dropout(llm_hidden)
        past_seen_tokens = 0
        cache_position = torch.arange(past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], \
                                      device=inputs_embeds.device)
        position_ids = cache_position.unsqueeze(0)
        hidden_states = inputs_embeds
        position_embeddings = self.rotary_emb(hidden_states, position_ids)
        attention_mask = ~(input_mask.unsqueeze(1)) * torch.finfo(inputs_embeds.dtype).min
        for decoder_layer in self.layers:
            layer_outputs = decoder_layer(
                hidden_states,
                attention_mask=attention_mask,
                position_ids=position_ids,
                past_key_value=past_key_values,
                output_attentions=False,
                use_cache=True,
                cache_position=None,
                position_embeddings=position_embeddings,
            )
            hidden_states = layer_outputs[0]
        hidden_states = self.norm(hidden_states)

        encoder_out = hidden_states[:, llm_hidden.size(1):]

        # Project to vocabulary size
        logits = self.out_fnn(encoder_out)

        if self.encoder_criterion == 'ce':
            loss = self.criterion(logits, y)

        if self.training:
            self.reporter.log_loss('loss', float(loss))

        return loss
    
    def transformer_infer(self, inputs_embeds, cache_position, past_key_values):
        position_ids = cache_position.unsqueeze(0)
        hidden_states = inputs_embeds
        position_embeddings = self.rotary_emb(hidden_states, position_ids)
        next_decoder_cache = None
        for decoder_layer in self.layers:
            layer_outputs = decoder_layer(
                hidden_states,
                attention_mask=None,
                position_ids=position_ids,
                past_key_value=past_key_values,
                output_attentions=False,
                use_cache=True,
                cache_position=None,
                position_embeddings=position_embeddings,
            )
            hidden_states = layer_outputs[0]
            next_decoder_cache = layer_outputs[1]
        return hidden_states
            
    def infer(self, hidden, top_k, prefix, penalty_window_size, penalty, max_tokens=1000):
        # Pass through pre_nn
        hidden = self.pre_nn_forward(hidden, [hidden.size(1)])
        # Concat bos embedding
        bos_emb = self.embedding(torch.full((1, 1), self.vocab_size, dtype=torch.long, device=hidden.device))
        hidden = torch.cat([bos_emb, hidden], dim=1)
        # init past key values
        past_key_values = DynamicCache.from_legacy_cache(None)
        # Pass through the prefix nar decoder
        if prefix is not None and self.kv_cache_prefix_finetune:
            self.kv_cache_prefix_forward(prefix, [prefix.size(1)], past_key_values)
        inputs_embeds = hidden
        past_seen_tokens = 0
        cache_position = torch.arange(past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], \
                                      device=inputs_embeds.device)
        hidden_states = self.transformer_infer(inputs_embeds, cache_position, past_key_values)

        # init generated tokens
        cur_token = torch.full((1, 1), self.vocab_size + 1, dtype=torch.long, device=hidden.device)
        generated_tokens = torch.full((1, 1), self.vocab_size + 1, dtype=torch.long, device=hidden.device)
        # generate tokens
        for i in range(max_tokens):
            inputs_embeds = self.embedding(cur_token)
            past_seen_tokens = past_key_values.get_seq_length()
            if prefix is not None:
                past_seen_tokens = past_seen_tokens - prefix.size(1)
            cache_position = torch.arange(past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], \
                                          device=inputs_embeds.device)
            hidden_states = self.transformer_infer(inputs_embeds, cache_position, past_key_values)
            hidden_states = self.norm(hidden_states)

            # Project to vocabulary size
            logits = self.out_fnn(hidden_states)

            # apply penalty
            if penalty_window_size > 0:
                for token in set(generated_tokens[0][-penalty_window_size:]):
                    logits[:, :, token] /= penalty

            # top k sampling
            output = logits.squeeze(0).squeeze(0)
            probs = torch.nn.functional.softmax(output, dim=-1)
            top_k_probs, top_k_indices = torch.topk(probs, top_k)
            probs = torch.zeros_like(probs).scatter_(0, top_k_indices, top_k_probs)
            probs = probs / probs.sum()
            next_token_id = torch.multinomial(probs, 1).unsqueeze(0)

            generated_tokens = torch.cat([generated_tokens, next_token_id], dim=-1)
            cur_token = next_token_id

            # eos
            if next_token_id == self.vocab_size + 2:
                break
            yield next_token_id