File size: 18,759 Bytes
bc752b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
import random
import torch
import copy
import re

from torch import nn
from torch.nn.utils.rnn import pad_sequence
import torch.nn.functional as F

from collections import defaultdict
from typing import Dict, List, Optional, Tuple

from transformers import AutoModelForCausalLM
from transformers import AutoTokenizer

from vita.model.vita_tts.adapter import *

IGNORE_ID = -1

class AudioLLM(torch.nn.Module):
    def __init__(
        self,
        encoder: torch.nn.Module,
        llm_path: str,
        freeze_llm: bool = True,
        enc_out_dim: int = 512,
        llm_embed_dim: int = 4096,
        kernel_size: int = 3,
        IGNORE_ID: int = -100,
        adpter_type: str = 'cnn',
        add_audio_bos_eos: bool = False,
        task_num: int = 10,
        add_ctc_prompt_ratio: float = 0.0,
        lang_dict: dict = None,
        ctc: torch.nn.Module = None,
        tokenize_ctc_char: bool = False,
        task_before_audio: bool = False,
        hyp_before_task: bool = False,
        prompt_finetune: bool = False,
        add_prompt_before: bool = False,
        prompt_num: int = 5,
        prefix_finetune: bool = False,
        prefix_num: int = 5,
        llm_head_num: int = 32,
        num_key_value_heads: int = None,
        task_type: str = 'prompt',
        freeze_encoder: bool = False,
        freeze_adpter: bool = False,
        activation_func: str = 'relu',
        norm: str = 'batch',
        use_lora: bool = False,
        clone_encoder: torch.nn.Module = None,
        chat_template: str = None,
        predict_usr_state: int = 0,
        chunk_size: int = -1,
    ):
        super().__init__()

        self.encoder =  encoder
        self.llm_decoder = AutoModelForCausalLM.from_pretrained(llm_path, 
                                                    torch_dtype="auto",
                                                    trust_remote_code=True)
        self.tokenizer = AutoTokenizer.from_pretrained(llm_path, 
                                                    trust_remote_code=True)
        self.freeze_llm =  freeze_llm
        self.enc_out_dim = enc_out_dim
        self.llm_embed_dim = llm_embed_dim
        self.IGNORE_ID = IGNORE_ID
        self.add_audio_bos_eos = add_audio_bos_eos
        self.add_ctc_prompt_ratio = add_ctc_prompt_ratio
        self.lang_dict = lang_dict
        self.tokenize_ctc_char = tokenize_ctc_char
        self.task_before_audio = task_before_audio
        self.hyp_before_task = hyp_before_task
        self.prompt_finetune = prompt_finetune
        self.add_prompt_before = add_prompt_before
        self.prompt_num = prompt_num
        self.prefix_finetune = prefix_finetune
        self.prefix_num = prefix_num
        self.llm_head_num = llm_head_num
        if num_key_value_heads is None:
            self.num_key_value_heads = llm_head_num
        else:
            self.num_key_value_heads = num_key_value_heads
        self.kv_cache_dim = llm_embed_dim // self.llm_head_num * self.num_key_value_heads
        self.task_type = task_type
        self.freeze_encoder = freeze_encoder
        self.freeze_adpter = freeze_adpter
        self.predict_usr_state = predict_usr_state
        self.chunk_size = chunk_size

        if not hasattr(self.tokenizer, "eod_id"):
            self.tokenizer.eod_id = self.tokenizer.eos_token_id
        if not hasattr(self.llm_decoder, "transformer"):
            self.llm_decoder.transformer = self.llm_decoder.model
            self.llm_decoder.transformer.h = self.llm_decoder.transformer.layers
        if not hasattr(self.llm_decoder.transformer, "wte"):
            self.llm_decoder.transformer.wte = \
                self.llm_decoder.transformer.embed_tokens

        # for chat mode
        if chat_template is not None:
            self.tokenizer.eod_id = self.tokenizer('<|im_end|>'
                                                )['input_ids'][0]
            self.chat_template = {}
            chat_template = chat_template.split('<audio>')
            chat_prefix = chat_template[0].split('<|im_end|>')
            chat_role = chat_prefix[0] + '<|im_end|>'
            self.chat_template['role'] = self.tokenizer(
                        [chat_role], return_tensors="pt")['input_ids']
            self.chat_template['prefix'] = self.tokenizer(
                        [chat_prefix[1]], return_tensors="pt")['input_ids']
            self.chat_template['suffix'] = self.tokenizer(
                        [chat_template[1]], return_tensors="pt")['input_ids']
        else:
            self.chat_template = None

        # for CTC prompt
        if self.add_ctc_prompt_ratio > 0.0:
            assert lang_dict is not None
            assert ctc is not None
            self.ctc = ctc.eval()
            if clone_encoder is None:
                self.clone_encoder = copy.deepcopy(encoder)
            else:
                self.clone_encoder = clone_encoder
            self.clone_encoder.eval()
            for (name, param) in self.clone_encoder.named_parameters():
                param.requires_grad = False
            for (name, param) in self.ctc.named_parameters():
                param.requires_grad = False
        else:
            self.clone_encoder = None

        if self.freeze_llm:
            self.llm_decoder.eval()
            for (name, param) in self.llm_decoder.named_parameters():
                param.requires_grad = False
        
        if use_lora:
            config = LoraConfig(
                r=lora_r,
                lora_alpha=lora_alpha,
                target_modules=UNET_TARGET_MODULES,
                lora_dropout=args.lora_dropout,
                bias=args.lora_bias,
            )

        if adpter_type == 'cnn':
            self.adpter = CNNAdapter(enc_out_dim, llm_embed_dim, kernel_size)
        elif adpter_type == 'linear':
            self.adpter = LinearAdapter(enc_out_dim, llm_embed_dim)
        elif adpter_type == 'subsampling':
            self.adpter = CNNSubsampling(enc_out_dim, llm_embed_dim, 
                                        kernel_size, activation_func, norm)
        
        self.task_embeddings = torch.nn.Embedding(task_num, llm_embed_dim)
        if task_type == 'prefix':
            self.prefix_embeddings = nn.ModuleList(
                    [
                        torch.nn.ModuleList(
                            [nn.Embedding(task_num, self.kv_cache_dim),
                            nn.Embedding(task_num, self.kv_cache_dim)]
                        )
                        for i in range(len(self.llm_decoder.transformer.h))
                    ]
                )

        if self.prompt_finetune or self.prefix_finetune:
            if self.prompt_finetune:
                self.prompt_embeddings = nn.Embedding(prompt_num, llm_embed_dim)
                self.prompt_ids = torch.Tensor([i for i in range(prompt_num)]).long()
            if self.prefix_finetune:
                self.prefix_embeddings = nn.ModuleList(
                    [
                        torch.nn.ModuleList(
                            [nn.Embedding(prefix_num, self.kv_cache_dim),
                            nn.Embedding(prefix_num, self.kv_cache_dim)]
                        )
                        for i in range(len(self.llm_decoder.transformer.h))
                    ]
                )
                self.prefix_ids = torch.Tensor([i for i in range(prefix_num)]).long()

        if self.freeze_encoder:
            self.encoder.eval()
            for (name, param) in self.encoder.named_parameters():
                param.requires_grad = False
        if self.freeze_adpter:
            self.adpter.eval()
            for (name, param) in self.adpter.named_parameters():
                param.requires_grad = False

        if self.predict_usr_state:
            self.predictor_head = torch.nn.Linear(llm_embed_dim, predict_usr_state)
        else:
            self.predictor_head = None

        # define task ids
        self.task_ids = {
            "sot": 0,
            "transcribe": 1,
            "translate": 2,
            "zh": 3,
            "en": 4,
            "audio": 5,
            "/audio": 6,
            "hyps": 7,
            "/hyps": 8,
        }
        
    def set_system_role(
        self,
        extra_inputs: Optional[dict] = None,
    ):
        # Ensure 'past_key_values' does not exist in extra_inputs, raise an exception if it does
        assert extra_inputs.get('past_key_values', None) is None, "past key values already exist!!!"
        
        # If 'role' key is present in extra_inputs, use that role as the chat prefix
        if extra_inputs.get('role', None) is not None:
            chat_prefix = self.tokenizer([extra_inputs['role']], 
                return_tensors="pt")['input_ids'].to('cuda')  # Convert role to tokens and move to CUDA device
        else:
            # If no 'role' is provided, use the default chat template and remove the last token (<|im_end|>)
            chat_prefix = self.chat_template['role'][:, :-1].to('cuda')
        
        # Use the LLM decoder's word embedding layer to convert the chat prefix into embeddings
        inputs_embeds = self.llm_decoder.transformer.wte(chat_prefix)
        
        # Create an attention mask with the same shape as the chat prefix, all values set to True
        attention_mask = torch.full(chat_prefix.shape, 
                            True).to(inputs_embeds.device) 
        
        # Prepare the input dictionary containing embeddings and attention mask
        inputs = {
                'inputs_embeds': inputs_embeds.half(),  # Convert embeddings to half precision floats
                'attention_mask': attention_mask,
            }

        # Call the _generate_one_step method to generate one step output, including past_key_values, etc.
        _, past_key_values, stat, _ = self._generate_one_step(
                                                copy.deepcopy(inputs), "sl")
        
        # Return the generated past_key_values
        return past_key_values

    def recognize(
        self,
        speech: torch.Tensor,
        speech_lengths: torch.Tensor,
        extra_inputs: Optional[dict] = None,
    ):
        assert extra_inputs.get('past_key_values', None) is not None, "must set system role first!!!"

        buffer = extra_inputs.get('encoder_cache', None)
        cnn_cache = extra_inputs.get('adapter_cache', None)
        pe_index = extra_inputs.get('pe_index', 0)
        if extra_inputs['stat'] == 'sl' or extra_inputs['stat'] == 'cl':
            # Encoder
            
            if buffer is None:
                buffer = [None] * self.encoder.enc[1].num_blocks
            
            encoder_out, buffer, _, _, pe_index = self.encoder.infer(speech, buffer, 
                                                                    0, None, pe_index)

            encoder_mask = torch.full(encoder_out.shape[:2], True).unsqueeze(1
                                                            ).to(encoder_out.device)

            # adapter
            inputs_embeds, encoder_mask, cnn_cache = self.adpter(encoder_out, encoder_mask, 
                                            cache=cnn_cache, return_cache=True) # 1, T, D

            attention_mask = encoder_mask.squeeze(1) # 1, T

        # prompt
        if extra_inputs['stat'] == 'sl':
            if self.prompt_finetune:
                prompt_ids = self.prompt_ids.repeat(1, 1).to(inputs_embeds.device)
                prompt_embeds = self.prompt_embeddings(
                                    prompt_ids.to(inputs_embeds.device)) # B, 5, D
                prompt_mask = torch.full(prompt_ids.shape, 
                                    True).to(inputs_embeds.device) # B, 5
                
                if self.add_prompt_before:
                    inputs_embeds = torch.cat((prompt_embeds, inputs_embeds), 1) # B, (T+5), D
                    attention_mask = torch.cat((prompt_mask, attention_mask), 1) # B, (T+5)

        # chat mode
        if self.chat_template is not None:
            if extra_inputs['stat'] == 'sl':
                chat_prefix = self.chat_template['prefix'].to(
                                                    inputs_embeds.device)
                chat_prefix = torch.cat((torch.tensor([[self.tokenizer.eod_id]]
                                    ).to(inputs_embeds.device), chat_prefix), 1)
                chat_prefix_embeds = self.llm_decoder.transformer.wte(chat_prefix)
                chat_prefix_mask = torch.full(chat_prefix.shape, 
                                True).to(inputs_embeds.device)
                inputs_embeds = torch.cat((chat_prefix_embeds, inputs_embeds), 1)
                attention_mask = torch.cat((chat_prefix_mask, attention_mask), 1)
            if extra_inputs['stat'] == 'ss':
                chat_suffix = self.chat_template['suffix'].to('cuda')
                chat_suffix_embeds = self.llm_decoder.transformer.wte(chat_suffix)
                chat_suffix_mask = torch.full(chat_suffix.shape, True).to('cuda')
                inputs_embeds = chat_suffix_embeds
                attention_mask = chat_suffix_mask
        
        if extra_inputs['stat'] != 'cs':
            inputs = {
                'inputs_embeds': inputs_embeds.half(),
                'attention_mask': attention_mask,
            }
        else:
            attention_mask = torch.full([1, 1], True).to('cuda')
            inputs = {
                'input_ids': extra_inputs['last_id'],
                'attention_mask': attention_mask
            }

        # add kv cache
        inputs['past_key_values'] = extra_inputs['past_key_values']
        past_mask = torch.full([1, inputs['past_key_values'][0][0].size(2)],
                                True).to('cuda')
        attention_mask = torch.cat((past_mask, attention_mask), 1)
        inputs['attention_mask'] = attention_mask

        top_p = extra_inputs.get('top_p', 1.0)
        top_k = extra_inputs.get('top_k', 0)
        temperature = extra_inputs.get('temperature', 1.0)

        last_id, past_key_values, stat, hidden_state = self._generate_one_step(copy.deepcopy(inputs), 
                                                extra_inputs['stat'],
                                                top_p=top_p, 
                                                top_k=top_k,
                                                temperature=temperature)

        return last_id, stat, past_key_values, cnn_cache, buffer, pe_index, hidden_state
    
    def _post_decode(self, output, temperature=1.0, top_k=0, top_p=0.0):
        """
        Decoding function, based on the posterior probability output, 
        uses top_k, top_p, and temperature parameters for sampling.

        Parameters:
        - output: torch.Tensor, shaped as (1, 1, D), represents the posterior probability output by the model.
        - top_k: int, indicates selecting the top k tokens with the highest probability for sampling.
                      If 0, no top_k filtering is performed.
        - top_p: float, indicates selecting tokens with cumulative probability not exceeding p for sampling.
                        If 0.0, no top_p filtering is performed.
        - temperature: float, represents the sampling temperature parameter. 
                              The higher the value, the more random the sampling; 
                            the lower the value, the more deterministic the sampling.

        Returns:
        - Selected token index.
        """
        output = output.squeeze(0).squeeze(0)

        # temperature
        if temperature != 1.0:
            output = output / temperature

        probs = torch.nn.functional.softmax(output, dim=-1)

        # top_k
        if top_k > 0:
            top_k_probs, top_k_indices = torch.topk(probs, top_k)
            probs = torch.zeros_like(probs).scatter_(0, top_k_indices, top_k_probs)
            probs = probs / probs.sum()

        # top_p
        if top_p > 0.0:
            sorted_probs, sorted_indices = torch.sort(probs, descending=True)
            cumulative_probs = torch.cumsum(sorted_probs, dim=-1)
            sorted_indices_to_remove = cumulative_probs > top_p
            if sorted_indices_to_remove[0]:
                sorted_indices_to_remove[1:] = sorted_indices_to_remove[:-1].clone()
                sorted_indices_to_remove[0] = 0

            indices_to_remove = sorted_indices[sorted_indices_to_remove]
            probs[indices_to_remove] = 0
            probs = probs / probs.sum()

        token_index = torch.multinomial(probs, 1)
        return token_index.unsqueeze(0)
    
    def _generate_one_step(
        self,
        inputs,
        stat,
        top_p: float = 1.0,
        top_k: int = 0,
        temperature: float = 1.0,
    ):
        """
        Generates the model's next output based on the current input and state.

        Parameters:
        - inputs: The input tensor containing the model's input data.
        - stat: The current state information used to control the generation process.
        - top_p: The threshold for controlling top-p sampling.
        - top_k: The threshold for controlling top-k sampling.
        - temperature: Controls the randomness of sampling.

        Returns:
        - last_id: The index of the last generated token.
        - stat: The updated state information.
        - past_key_values: The model's historical key-value pairs, used for cross-step memory.
        - hidden_state: The model's hidden state, used to maintain cross-step contextual information.
        """
        outputs = self.llm_decoder.model(**inputs)
        if stat == 'sl' or stat == 'cl':
            state_logits = self.predictor_head(
                        outputs['last_hidden_state'])[0, :]
            prob = F.softmax(state_logits[:, :-1])
            state_prob = prob[-1].clone()
            state_1 = state_prob[1]
            state_2 = state_prob[2]
            print("State 1 prob: {:.4f}, State 2 prob: {:.4f}".format(state_1.item(), state_2.item()))
            if state_2 > 0.5:
                return None, outputs['past_key_values'], 'el', None
            if state_1 > 0.5:
                return None, outputs['past_key_values'], 'ss', None
            return None, outputs['past_key_values'], 'cl', None

        last_logit = self.llm_decoder.lm_head(outputs['last_hidden_state'][:, -1:, :])
        last_id = self._post_decode(last_logit, temperature=temperature, top_k=top_k, top_p=top_p)
        return_tts_state = outputs['last_hidden_state'][:, -1:, :]

        if last_id[0][0] == self.tokenizer.eod_id:
            return None, outputs['past_key_values'], 'sl', return_tts_state
        else:
            return last_id, outputs['past_key_values'], 'cs', return_tts_state