File size: 10,079 Bytes
bc752b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
from typing import List, Optional, Tuple, Union

import torch
import torch.nn as nn
from PIL import Image
from torch.nn import CrossEntropyLoss
from transformers import (
    AutoConfig,
    AutoModelForCausalLM,
    MistralConfig,
    MistralForCausalLM,
    MistralModel,
)
from transformers.cache_utils import Cache, DynamicCache
from transformers.modeling_outputs import CausalLMOutputWithPast, MoeCausalLMOutputWithPast
from transformers.generation.utils import GenerateOutput

from ..vita_arch import VITAMetaForCausalLM, VITAMetaModel


def custom_forward(
    self,
    input_ids: torch.LongTensor = None,
    attention_mask: Optional[torch.Tensor] = None,
    position_ids: Optional[torch.LongTensor] = None,
    past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
    inputs_embeds: Optional[torch.FloatTensor] = None,
    labels: Optional[torch.LongTensor] = None,
    use_cache: Optional[bool] = None,
    output_attentions: Optional[bool] = None,
    output_hidden_states: Optional[bool] = None,
    return_dict: Optional[bool] = None,
    cache_position: Optional[torch.LongTensor] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
    r"""
    Args:
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

    Returns:

    Example:

    ```python
    >>> from transformers import AutoTokenizer, MistralForCausalLM

    >>> model = MistralForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1")
    >>> tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")

    >>> prompt = "Hey, are you conscious? Can you talk to me?"
    >>> inputs = tokenizer(prompt, return_tensors="pt")

    >>> # Generate
    >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
    >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
    "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
    ```"""

    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
    output_hidden_states = (
        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
    )
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
    outputs = self.model(
        input_ids=input_ids,
        attention_mask=attention_mask,
        position_ids=position_ids,
        past_key_values=past_key_values,
        inputs_embeds=inputs_embeds,
        use_cache=use_cache,
        output_attentions=output_attentions,
        output_hidden_states=output_hidden_states,
        return_dict=return_dict,
        cache_position=cache_position,
    )

    hidden_states = outputs[0]
    logits = self.lm_head(hidden_states)
    # logits = logits.float()

    loss = None
    if labels is not None:
        # Shift so that tokens < n predict n
        shift_logits = logits[..., :-1, :].contiguous()
        shift_labels = labels[..., 1:].contiguous()
        # Flatten the tokens
        shift_logits = shift_logits.view(-1, self.config.vocab_size)
        shift_labels = shift_labels.view(-1)
        # Ensure tensors are on the same device
        shift_labels = shift_labels.to(shift_logits.device)
        loss_fct = CrossEntropyLoss()
        loss = loss_fct(shift_logits, shift_labels)

    if not return_dict:
        output = (logits,) + outputs[1:]
        return (loss,) + output if loss is not None else output

    return CausalLMOutputWithPast(
        loss=loss,
        logits=logits,
        past_key_values=outputs.past_key_values,
        hidden_states=outputs.hidden_states,
        attentions=outputs.attentions,
    )

MistralForCausalLM.forward = custom_forward


class VITAMistralConfig(MistralConfig):
    model_type = "vita-Mistral"


class VITAMistralModel(VITAMetaModel, MistralModel):
    config_class = VITAMistralConfig

    def __init__(self, config: MistralConfig):
        super(VITAMistralModel, self).__init__(config)


class VITAMistralForCausalLM(MistralForCausalLM, VITAMetaForCausalLM):
    config_class = VITAMistralConfig

    def __init__(self, config):
        super(MistralForCausalLM, self).__init__(config)
        self.model = VITAMistralModel(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # Initialize weights and apply final processing
        self.post_init()

    def get_model(self):
        return self.model

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        images: Optional[torch.FloatTensor] = None,
        audios: Optional[dict] = None,
        return_dict: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        if inputs_embeds is None:
            (
                input_ids,
                position_ids,
                attention_mask,
                past_key_values,
                inputs_embeds,
                labels,
            ) = self.prepare_inputs_labels_for_multimodal(
                input_ids, position_ids, attention_mask, past_key_values, labels, images, audios
            )

        return super().forward(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            labels=labels,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
            cache_position=cache_position,
        )

    @torch.no_grad()
    def generate(
        self,
        inputs: Optional[torch.Tensor] = None,
        images: Optional[torch.Tensor] = None,
        audios: Optional[torch.Tensor] = None,
        **kwargs,
    ) -> Union[GenerateOutput, torch.LongTensor]:
        position_ids = kwargs.pop("position_ids", None)
        attention_mask = kwargs.pop("attention_mask", None)
        if "inputs_embeds" in kwargs:
            raise NotImplementedError("`inputs_embeds` is not supported")

        if images is not None or audios is not None:
            (
                inputs,
                position_ids,
                attention_mask,
                _,
                inputs_embeds,
                _
            ) = self.prepare_inputs_labels_for_multimodal(
                inputs,
                position_ids,
                attention_mask,
                None,
                None,
                images,
                audios
            )
        else:
            inputs_embeds = self.get_model().embed_tokens(inputs)

        return super().generate(
            position_ids=position_ids,
            attention_mask=attention_mask,
            inputs_embeds=inputs_embeds,
            **kwargs
        )

    def prepare_inputs_for_generation(
        self,
        input_ids,
        past_key_values=None,
        inputs_embeds=None,
        attention_mask=None,
        **kwargs,
    ):
        images = kwargs.pop("images", None)
        audios = kwargs.pop("audios", None)

        _inputs = super().prepare_inputs_for_generation(
            input_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            attention_mask=attention_mask,
            **kwargs,
        )

        if images is not None:
            _inputs["images"] = images
        if audios is not None:
            _inputs["audios"] = audios
        return _inputs

    def expand2square(self, pil_img, background_color):
        width, height = pil_img.size
        if width == height:
            return pil_img
        elif width > height:
            result = Image.new(pil_img.mode, (width, width), background_color)
            result.paste(pil_img, (0, (width - height) // 2))
            return result
        else:
            result = Image.new(pil_img.mode, (height, height), background_color)
            result.paste(pil_img, ((height - width) // 2, 0))
            return result

    def process_images(self, images, model_cfg):
        vision_tower = self.get_vision_tower()
        if not vision_tower.is_loaded:
            vision_tower.load_model()
        image_processor = vision_tower.image_processor
        image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None)
        new_images = []
        if image_aspect_ratio == "pad":
            for image in images:
                image = self.expand2square(
                    image, tuple(int(x * 255) for x in image_processor.image_mean)
                )
                image = image_processor.preprocess(image, return_tensors="pt")["pixel_values"][0]
                new_images.append(image)
        else:
            return image_processor(images, return_tensors="pt")["pixel_values"]
        if all(x.shape == new_images[0].shape for x in new_images):
            new_images = torch.stack(new_images, dim=0)
        return new_images


AutoConfig.register("vita-Mistral", VITAMistralConfig)
AutoModelForCausalLM.register(VITAMistralConfig, VITAMistralForCausalLM)