File size: 11,588 Bytes
bc752b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import os
import warnings

import torch
from transformers import AutoConfig, AutoTokenizer, BitsAndBytesConfig, logging

from vita.constants import GLOBAL_WEIGHTS_PATH
from vita.model import *

logging.set_verbosity_error()
warnings.filterwarnings("ignore")


def load_pretrained_model(
    model_path,
    model_base,
    model_name,
    model_type,
    load_8bit=False,
    load_4bit=False,
    device_map="auto",
    device="cuda",
    **kwargs,
):
    if model_type not in {"mixtral-8x7b", "nemo", "qwen2p5_instruct", "qwen2p5_fo_instruct"}:
        raise ValueError(f"Unknown Model Type {model_type}")

    kwargs = {"device_map": device_map, **kwargs}

    if device != "cuda":
        kwargs["device_map"] = {"": device}

    if load_8bit:
        kwargs["load_in_8bit"] = True
    elif load_4bit:
        kwargs["load_in_4bit"] = True
        kwargs["quantization_config"] = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype=torch.float16,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type="nf4",
        )
    else:
        kwargs["torch_dtype"] = torch.float16

    # Load VITA model
    if "lora" in model_name.lower() and model_base is None:
        warnings.warn(
            "There is `lora` in model name but no `model_base` is provided. If you are loading a LoRA model, please provide the `model_base` argument."
        )
    if "lora" in model_name.lower() and model_base is not None:
        lora_cfg_pretrained = AutoConfig.from_pretrained(model_path)

        print("Loading VITA from base model...")
        if model_type == "mixtral-8x7b":
            tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
            model = VITAMixtralForCausalLM.from_pretrained(
                model_path, low_cpu_mem_usage=True, **kwargs
            )

        token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features
        if model.lm_head.weight.shape[0] != token_num:
            model.lm_head.weight = torch.nn.Parameter(
                torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)
            )
            model.model.embed_tokens.weight = torch.nn.Parameter(
                torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)
            )

        print("Loading additional VITA weights...")
        if os.path.exists(os.path.join(model_path, "non_lora_trainables.bin")):
            non_lora_trainables = torch.load(
                os.path.join(model_path, "non_lora_trainables.bin"), map_location="cpu"
            )
        else:
            # this is probably from HF Hub
            from huggingface_hub import hf_hub_download

            def load_from_hf(repo_id, filename, subfolder=None):
                cache_file = hf_hub_download(
                    repo_id=repo_id, filename=filename, subfolder=subfolder
                )
                return torch.load(cache_file, map_location="cpu")

            non_lora_trainables = load_from_hf(model_path, "non_lora_trainables.bin")

        non_lora_trainables = {
            (k[11:] if k.startswith("base_model.") else k): v
            for k, v in non_lora_trainables.items()
        }
        if any(k.startswith("model.model.") for k in non_lora_trainables):
            non_lora_trainables = {
                (k[6:] if k.startswith("model.") else k): v for k, v in non_lora_trainables.items()
            }
        model.load_state_dict(non_lora_trainables, strict=False)

        from peft import PeftModel

        print("Loading LoRA weights...")
        model = PeftModel.from_pretrained(model, model_path)
        print("Merging LoRA weights...")
        model = model.merge_and_unload()
        print("Model is loaded...")
    elif model_base is not None:
        # this may be mm projector only
        print("Loading VITA from base model...")

        cfg_pretrained = AutoConfig.from_pretrained(model_path)
        if model_type == "mixtral-8x7b":
            tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=True)
            model = VITAMixtralForCausalLM.from_pretrained(
                model_base, low_cpu_mem_usage=True, **kwargs
            )

            # load vision encoder
            from types import SimpleNamespace
            model_args = {
                "vision_tower": f"{GLOBAL_WEIGHTS_PATH}/InternViT-300M-448px",
                "pretrain_mm_mlp_adapter": None,
                "mm_projector_type": "mlp2x_gelu",
            }
            model_args = SimpleNamespace(**model_args)
            model.get_model().initialize_vision_modules(model_args=model_args)

            # load audio encoder
            from types import SimpleNamespace
            model_args = {
               'audio_encoder': f"{GLOBAL_WEIGHTS_PATH}/audio-encoder-2wh_zh_en_audioset_Mixtral-8x7B_New-base-tunning",
               'freeze_audio_encoder': True,
               'freeze_audio_encoder_adapter': True
            }
            model_args = SimpleNamespace(**model_args)
            model.get_model().initialize_audio_modules(model_args=model_args)
            audio_encoder = model.get_audio_encoder()
            device = torch.device('cuda:0')
            audio_encoder = audio_encoder.to(device)

        mm_projector_weights = torch.load(
            os.path.join(model_path, "mm_projector.bin"), map_location="cpu"
        )
        mm_projector_weights = {k: v.to(torch.float16) for k, v in mm_projector_weights.items()}
        model.load_state_dict(mm_projector_weights, strict=False)
        model.model.mm_projector.to(device="cuda", dtype=torch.float16)
        model.model.vision_tower.to(device="cuda", dtype=torch.float16)
    else:
        if model_type == "mixtral-8x7b":
            # import pdb; pdb.set_trace()
            device_map = {
                "model.embed_tokens": 0,
                "model.layers.0": 0,
                "model.layers.1": 0,
                "model.layers.2": 0,
                "model.layers.3": 0,
                "model.layers.4": 0,
                "model.layers.5": 0,
                "model.layers.6": 0,
                "model.layers.7": 0,
                "model.layers.8": 0,
                "model.layers.9": 0,
                "model.layers.10": 0,
                "model.layers.11": 0,
                "model.layers.12": 0,
                "model.layers.13": 0,
                "model.layers.14": 0,
                "model.layers.15": 0,
                "model.layers.16": 1,
                "model.layers.17": 1,
                "model.layers.18": 1,
                "model.layers.19": 1,
                "model.layers.20": 1,
                "model.layers.21": 1,
                "model.layers.22": 1,
                "model.layers.23": 1,
                "model.layers.24": 1,
                "model.layers.25": 1,
                "model.layers.26": 1,
                "model.layers.27": 1,
                "model.layers.28": 1,
                "model.layers.29": 1,
                "model.layers.30": 1,
                "model.layers.31": 1,
                "model.norm": 1,
                "model.vision_tower": 1,
                "model.mm_projector": 1,
                "model.audio_encoder": 1,
                "lm_head": 1,
            }
            device_map["model.audio_encoder"] = 0
            kwargs.update(device_map=device_map)
            tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
            model = VITAMixtralForCausalLM.from_pretrained(
                model_path, low_cpu_mem_usage=True, **kwargs
            )
            # model.hf_device_map
        elif model_type == "nemo":
            # import pdb; pdb.set_trace()
            tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
            model = VITAMistralForCausalLM.from_pretrained(
                model_path, low_cpu_mem_usage=True, **kwargs
            )
        elif model_type == "qwen2p5_instruct":
            # import pdb; pdb.set_trace()
            tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
            model = VITAQwen2ForCausalLM.from_pretrained(
                model_path, low_cpu_mem_usage=True, **kwargs
            )
        elif model_type == "qwen2p5_fo_instruct":
            # import pdb; pdb.set_trace()
            tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
            model = VITAFOQwen2ForCausalLM.from_pretrained(
                model_path, low_cpu_mem_usage=True, **kwargs
            )

    model.resize_token_embeddings(len(tokenizer))

    vision_tower = model.get_vision_tower()
    if not vision_tower.is_loaded:
        vision_tower.load_model()

    num_params = sum(p.numel() for p in vision_tower.parameters())
    print("the number of vision encoder params: {}M".format(num_params / 1024 / 1024))

    if getattr(model.config, "unfreeze_vision_tower", False):
        if "lora" in model_name.lower():
            assert model_base is not None
            vision_non_lora_trainables = {
                k[19:]: v
                for k, v in non_lora_trainables.items()
                if k.startswith("model.vision_tower.")
            }
            vision_tower.load_state_dict(vision_non_lora_trainables, strict=False)
        else:
            assert model_base is None
            from safetensors.torch import load_file

            vision_weights = {}
            for file_name in os.listdir(model_path):
                if file_name.endswith("safetensors"):
                    vision_weights.update(
                        {
                            k[19:]: v
                            for k, v in load_file(os.path.join(model_path, file_name)).items()
                            if k.startswith("model.vision_tower.")
                        }
                    )
            vision_tower.load_state_dict(vision_weights, strict=True)

    # import pdb; pdb.set_trace()
    # if (not getattr(model.config, "freeze_audio_encoder", True)) and (not getattr(model.config, "freeze_audio_encoder_adapter", True)):
    #    from safetensors.torch import load_file
    #    audio_weights = {}
    #    for file_name in os.listdir(model_path):
    #        if file_name.endswith('safetensors'):
    #            audio_weights.update(
    #                {k[20:]: v for k, v in load_file(os.path.join(model_path, file_name)).items() if
    #                    k.startswith('model.audio_encoder.')})
    #    audio_encoder.load_state_dict(audio_weights, strict=True)
    #    audio_encoder.eval()
    # import pdb; pdb.set_trace()

    # import pdb; pdb.set_trace()
    # from safetensors.torch import load_file
    # audio_weights = {}
    # for file_name in os.listdir(model_path):
    #    if file_name.endswith('safetensors'):
    #        audio_weights.update(
    #            {k[20:]: v for k, v in load_file(os.path.join(model_path, file_name)).items() if
    #                k.startswith('model.audio_encoder.')})
    # import pdb; pdb.set_trace()

    vision_tower.to(dtype=torch.float16)
    image_processor = vision_tower.image_processor

    #import pdb; pdb.set_trace()
    if hasattr(model.config, "max_sequence_length"):
        context_len = model.config.max_sequence_length
    else:
        context_len = 2048

    if model.generation_config.pad_token_id is None:
        model.generation_config.pad_token_id = model.generation_config.eos_token_id

    if model_type == "phi-3":
        model.generation_config.eos_token_id = tokenizer.eos_token_id

    return tokenizer, model, image_processor, context_len