File size: 5,417 Bytes
bc752b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import torch
import torch.nn as nn
import torch.nn.functional as F


class FsmnLayer(nn.Module):
    def __init__(
        self,
        input_dim,
        out_dim,
        hidden_dim,
        left_frame=1,
        right_frame=1,
        left_dilation=1,
        right_dilation=1,
    ):
        super(FsmnLayer, self).__init__()
        self.input_dim = input_dim
        self.out_dim = out_dim
        self.hidden_dim = hidden_dim
        self.left_frame = left_frame
        self.right_frame = right_frame
        self.left_dilation = left_dilation
        self.right_dilation = right_dilation
        self.conv_in = nn.Conv1d(input_dim, hidden_dim, kernel_size=1)
        if left_frame > 0:
            self.pad_left = nn.ConstantPad1d([left_dilation * left_frame, 0], 0.0)
            self.conv_left = nn.Conv1d(
                hidden_dim,
                hidden_dim,
                kernel_size=left_frame + 1,
                dilation=left_dilation,
                bias=False,
                groups=hidden_dim,
            )
        if right_frame > 0:
            self.pad_right = nn.ConstantPad1d([-right_dilation, right_dilation * right_frame], 0.0)
            self.conv_right = nn.Conv1d(
                hidden_dim,
                hidden_dim,
                kernel_size=right_frame,
                dilation=right_dilation,
                bias=False,
                groups=hidden_dim,
            )
        self.conv_out = nn.Conv1d(hidden_dim, out_dim, kernel_size=1)

        # cache = 1, self.hidden_dim, left_frame * left_dilation + right_frame * right_dilation
        self.cache_size = left_frame * left_dilation + right_frame * right_dilation
        self.buffer_size = self.hidden_dim * self.cache_size
        self.p_in_raw_chache_size = self.right_frame * self.right_dilation
        self.p_in_raw_buffer_size = self.hidden_dim * self.p_in_raw_chache_size
        self.hidden_chache_size = self.right_frame * self.right_dilation
        self.hidden_buffer_size = self.hidden_dim * self.hidden_chache_size

    @torch.jit.unused
    def forward(self, x, hidden=None):
        x_data = x.transpose(1, 2)
        p_in = self.conv_in(x_data)
        if self.left_frame > 0:
            p_left = self.pad_left(p_in)
            p_left = self.conv_left(p_left)
        else:
            p_left = 0
        if self.right_frame > 0:
            p_right = self.pad_right(p_in)
            p_right = self.conv_right(p_right)
        else:
            p_right = 0
        p_out = p_in + p_right + p_left
        if hidden is not None:
            p_out = hidden + p_out
        out = F.relu(self.conv_out(p_out))
        out = out.transpose(1, 2)
        return out, p_out

    @torch.jit.export
    def infer(self, x, buffer, buffer_index, buffer_out, hidden=None):
        # type: (Tensor, Tensor, Tensor, Optional[Tensor]) -> Tuple[Tensor, Tensor, Tensor, Tensor]
        p_in_raw = self.conv_in(x)

        cnn_buffer = buffer[buffer_index : buffer_index + self.buffer_size].reshape(
            [1, self.hidden_dim, self.cache_size]
        )
        p_in = torch.cat([cnn_buffer, p_in_raw], dim=2)
        # buffer[buffer_index: buffer_index + self.buffer_size] =  p_in[:, :, -self.cache_size:].reshape(-1)
        buffer_out.append(p_in[:, :, -self.cache_size :].reshape(-1))
        buffer_index = buffer_index + self.buffer_size

        if self.left_frame > 0:
            if self.right_frame > 0:
                p_left = p_in[:, :, : -self.right_frame * self.right_dilation]
            else:
                p_left = p_in[:, :]
            p_left_out = self.conv_left(p_left)
        else:
            p_left_out = torch.tensor([0])
        if self.right_frame > 0:
            p_right = p_in[:, :, self.left_frame * self.left_dilation + 1 :]
            p_right_out = self.conv_right(p_right)
        else:
            p_right_out = torch.tensor([0])

        if self.right_frame > 0:
            p_in_raw_cnn_buffer = buffer[
                buffer_index : buffer_index + self.p_in_raw_buffer_size
            ].reshape([1, self.hidden_dim, self.p_in_raw_chache_size])
            p_in_raw = torch.cat([p_in_raw_cnn_buffer, p_in_raw], dim=2)
            # buffer[buffer_index: buffer_index + self.p_in_raw_buffer_size] =  p_in_raw[:, :, -self.p_in_raw_chache_size:].reshape(-1)
            buffer_out.append(p_in_raw[:, :, -self.p_in_raw_chache_size :].reshape(-1))
            buffer_index = buffer_index + self.p_in_raw_buffer_size
            p_in_raw = p_in_raw[:, :, : -self.p_in_raw_chache_size]
        p_out = p_in_raw + p_left_out + p_right_out

        if hidden is not None:
            if self.right_frame > 0:
                hidden_cnn_buffer = buffer[
                    buffer_index : buffer_index + self.hidden_buffer_size
                ].reshape([1, self.hidden_dim, self.hidden_chache_size])
                hidden = torch.cat([hidden_cnn_buffer, hidden], dim=2)
                # buffer[buffer_index: buffer_index + self.hidden_buffer_size] =  hidden[:, :, -self.hidden_chache_size:].reshape(-1)
                buffer_out.append(hidden[:, :, -self.hidden_chache_size :].reshape(-1))
                buffer_index = buffer_index + self.hidden_buffer_size
                hidden = hidden[:, :, : -self.hidden_chache_size]
            p_out = hidden + p_out

        out = F.relu(self.conv_out(p_out))

        return out, buffer, buffer_index, buffer_out, p_out