Spaces:
Running
on
Zero
Running
on
Zero
Upload 2 files
Browse files- app.py +330 -0
- requirements.txt +23 -0
app.py
ADDED
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import random
|
3 |
+
import uuid
|
4 |
+
import json
|
5 |
+
import time
|
6 |
+
import asyncio
|
7 |
+
from threading import Thread
|
8 |
+
|
9 |
+
import gradio as gr
|
10 |
+
import spaces
|
11 |
+
import torch
|
12 |
+
import numpy as np
|
13 |
+
from PIL import Image
|
14 |
+
import edge_tts
|
15 |
+
|
16 |
+
from transformers import (
|
17 |
+
AutoModelForCausalLM,
|
18 |
+
AutoTokenizer,
|
19 |
+
TextIteratorStreamer,
|
20 |
+
Qwen2VLForConditionalGeneration,
|
21 |
+
AutoProcessor,
|
22 |
+
)
|
23 |
+
from transformers.image_utils import load_image
|
24 |
+
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
25 |
+
|
26 |
+
|
27 |
+
DESCRIPTION = """
|
28 |
+
# QwQ Edge 💬
|
29 |
+
"""
|
30 |
+
|
31 |
+
css = '''
|
32 |
+
h1 {
|
33 |
+
text-align: center;
|
34 |
+
display: block;
|
35 |
+
}
|
36 |
+
|
37 |
+
#duplicate-button {
|
38 |
+
margin: auto;
|
39 |
+
color: #fff;
|
40 |
+
background: #1565c0;
|
41 |
+
border-radius: 100vh;
|
42 |
+
}
|
43 |
+
'''
|
44 |
+
|
45 |
+
MAX_MAX_NEW_TOKENS = 2048
|
46 |
+
DEFAULT_MAX_NEW_TOKENS = 1024
|
47 |
+
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
48 |
+
|
49 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
50 |
+
|
51 |
+
# Load text-only model and tokenizer
|
52 |
+
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
|
53 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
54 |
+
model = AutoModelForCausalLM.from_pretrained(
|
55 |
+
model_id,
|
56 |
+
device_map="auto",
|
57 |
+
torch_dtype=torch.bfloat16,
|
58 |
+
)
|
59 |
+
model.eval()
|
60 |
+
|
61 |
+
TTS_VOICES = [
|
62 |
+
"en-US-JennyNeural", # @tts1
|
63 |
+
"en-US-GuyNeural", # @tts2
|
64 |
+
]
|
65 |
+
|
66 |
+
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
67 |
+
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
68 |
+
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
69 |
+
MODEL_ID,
|
70 |
+
trust_remote_code=True,
|
71 |
+
torch_dtype=torch.float16
|
72 |
+
).to("cuda").eval()
|
73 |
+
|
74 |
+
async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
|
75 |
+
"""Convert text to speech using Edge TTS and save as MP3"""
|
76 |
+
communicate = edge_tts.Communicate(text, voice)
|
77 |
+
await communicate.save(output_file)
|
78 |
+
return output_file
|
79 |
+
|
80 |
+
def clean_chat_history(chat_history):
|
81 |
+
"""
|
82 |
+
Filter out any chat entries whose "content" is not a string.
|
83 |
+
This helps prevent errors when concatenating previous messages.
|
84 |
+
"""
|
85 |
+
cleaned = []
|
86 |
+
for msg in chat_history:
|
87 |
+
if isinstance(msg, dict) and isinstance(msg.get("content"), str):
|
88 |
+
cleaned.append(msg)
|
89 |
+
return cleaned
|
90 |
+
|
91 |
+
# Environment variables and parameters for Stable Diffusion XL
|
92 |
+
MODEL_ID_SD = os.getenv("MODEL_VAL_PATH") # SDXL Model repository path via env variable
|
93 |
+
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
94 |
+
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
95 |
+
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
96 |
+
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) # For batched image generation
|
97 |
+
|
98 |
+
# Load the SDXL pipeline
|
99 |
+
sd_pipe = StableDiffusionXLPipeline.from_pretrained(
|
100 |
+
MODEL_ID_SD,
|
101 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
102 |
+
use_safetensors=True,
|
103 |
+
add_watermarker=False,
|
104 |
+
).to(device)
|
105 |
+
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
|
106 |
+
|
107 |
+
# Ensure that the text encoder is in half-precision if using CUDA.
|
108 |
+
if torch.cuda.is_available():
|
109 |
+
sd_pipe.text_encoder = sd_pipe.text_encoder.half()
|
110 |
+
|
111 |
+
# Optional: compile the model for speedup if enabled
|
112 |
+
if USE_TORCH_COMPILE:
|
113 |
+
sd_pipe.compile()
|
114 |
+
|
115 |
+
# Optional: offload parts of the model to CPU if needed
|
116 |
+
if ENABLE_CPU_OFFLOAD:
|
117 |
+
sd_pipe.enable_model_cpu_offload()
|
118 |
+
|
119 |
+
MAX_SEED = np.iinfo(np.int32).max
|
120 |
+
|
121 |
+
def save_image(img: Image.Image) -> str:
|
122 |
+
"""Save a PIL image with a unique filename and return the path."""
|
123 |
+
unique_name = str(uuid.uuid4()) + ".png"
|
124 |
+
img.save(unique_name)
|
125 |
+
return unique_name
|
126 |
+
|
127 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
128 |
+
if randomize_seed:
|
129 |
+
seed = random.randint(0, MAX_SEED)
|
130 |
+
return seed
|
131 |
+
|
132 |
+
@spaces.GPU(duration=60, enable_queue=True)
|
133 |
+
def generate_image_fn(
|
134 |
+
prompt: str,
|
135 |
+
negative_prompt: str = "",
|
136 |
+
use_negative_prompt: bool = False,
|
137 |
+
seed: int = 1,
|
138 |
+
width: int = 1024,
|
139 |
+
height: int = 1024,
|
140 |
+
guidance_scale: float = 3,
|
141 |
+
num_inference_steps: int = 25,
|
142 |
+
randomize_seed: bool = False,
|
143 |
+
use_resolution_binning: bool = True,
|
144 |
+
num_images: int = 1,
|
145 |
+
progress=gr.Progress(track_tqdm=True),
|
146 |
+
):
|
147 |
+
"""Generate images using the SDXL pipeline."""
|
148 |
+
seed = int(randomize_seed_fn(seed, randomize_seed))
|
149 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
150 |
+
|
151 |
+
options = {
|
152 |
+
"prompt": [prompt] * num_images,
|
153 |
+
"negative_prompt": [negative_prompt] * num_images if use_negative_prompt else None,
|
154 |
+
"width": width,
|
155 |
+
"height": height,
|
156 |
+
"guidance_scale": guidance_scale,
|
157 |
+
"num_inference_steps": num_inference_steps,
|
158 |
+
"generator": generator,
|
159 |
+
"output_type": "pil",
|
160 |
+
}
|
161 |
+
if use_resolution_binning:
|
162 |
+
options["use_resolution_binning"] = True
|
163 |
+
|
164 |
+
images = []
|
165 |
+
# Process in batches
|
166 |
+
for i in range(0, num_images, BATCH_SIZE):
|
167 |
+
batch_options = options.copy()
|
168 |
+
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
|
169 |
+
if "negative_prompt" in batch_options and batch_options["negative_prompt"] is not None:
|
170 |
+
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
|
171 |
+
# Wrap the pipeline call in autocast if using CUDA
|
172 |
+
if device.type == "cuda":
|
173 |
+
with torch.autocast("cuda", dtype=torch.float16):
|
174 |
+
outputs = sd_pipe(**batch_options)
|
175 |
+
else:
|
176 |
+
outputs = sd_pipe(**batch_options)
|
177 |
+
images.extend(outputs.images)
|
178 |
+
image_paths = [save_image(img) for img in images]
|
179 |
+
return image_paths, seed
|
180 |
+
|
181 |
+
@spaces.GPU
|
182 |
+
def generate(
|
183 |
+
input_dict: dict,
|
184 |
+
chat_history: list[dict],
|
185 |
+
max_new_tokens: int = 1024,
|
186 |
+
temperature: float = 0.6,
|
187 |
+
top_p: float = 0.9,
|
188 |
+
top_k: int = 50,
|
189 |
+
repetition_penalty: float = 1.2,
|
190 |
+
):
|
191 |
+
"""
|
192 |
+
Generates chatbot responses with support for multimodal input, TTS, and image generation.
|
193 |
+
Special commands:
|
194 |
+
- "@tts1" or "@tts2": triggers text-to-speech.
|
195 |
+
- "@image": triggers image generation using the SDXL pipeline.
|
196 |
+
"""
|
197 |
+
text = input_dict["text"]
|
198 |
+
files = input_dict.get("files", [])
|
199 |
+
|
200 |
+
if text.strip().lower().startswith("@image"):
|
201 |
+
# Remove the "@image" tag and use the rest as prompt
|
202 |
+
prompt = text[len("@image"):].strip()
|
203 |
+
yield "Generating image..."
|
204 |
+
image_paths, used_seed = generate_image_fn(
|
205 |
+
prompt=prompt,
|
206 |
+
negative_prompt="",
|
207 |
+
use_negative_prompt=False,
|
208 |
+
seed=1,
|
209 |
+
width=1024,
|
210 |
+
height=1024,
|
211 |
+
guidance_scale=3,
|
212 |
+
num_inference_steps=25,
|
213 |
+
randomize_seed=True,
|
214 |
+
use_resolution_binning=True,
|
215 |
+
num_images=1,
|
216 |
+
)
|
217 |
+
# Yield the generated image so that the chat interface displays it.
|
218 |
+
yield gr.Image(image_paths[0])
|
219 |
+
return # Exit early
|
220 |
+
|
221 |
+
tts_prefix = "@tts"
|
222 |
+
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3))
|
223 |
+
voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
|
224 |
+
|
225 |
+
if is_tts and voice_index:
|
226 |
+
voice = TTS_VOICES[voice_index - 1]
|
227 |
+
text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
|
228 |
+
# Clear previous chat history for a fresh TTS request.
|
229 |
+
conversation = [{"role": "user", "content": text}]
|
230 |
+
else:
|
231 |
+
voice = None
|
232 |
+
# Remove any stray @tts tags and build the conversation history.
|
233 |
+
text = text.replace(tts_prefix, "").strip()
|
234 |
+
conversation = clean_chat_history(chat_history)
|
235 |
+
conversation.append({"role": "user", "content": text})
|
236 |
+
|
237 |
+
if files:
|
238 |
+
if len(files) > 1:
|
239 |
+
images = [load_image(image) for image in files]
|
240 |
+
elif len(files) == 1:
|
241 |
+
images = [load_image(files[0])]
|
242 |
+
else:
|
243 |
+
images = []
|
244 |
+
messages = [{
|
245 |
+
"role": "user",
|
246 |
+
"content": [
|
247 |
+
*[{"type": "image", "image": image} for image in images],
|
248 |
+
{"type": "text", "text": text},
|
249 |
+
]
|
250 |
+
}]
|
251 |
+
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
252 |
+
inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda")
|
253 |
+
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
254 |
+
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
|
255 |
+
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
|
256 |
+
thread.start()
|
257 |
+
|
258 |
+
buffer = ""
|
259 |
+
yield "Thinking..."
|
260 |
+
for new_text in streamer:
|
261 |
+
buffer += new_text
|
262 |
+
buffer = buffer.replace("<|im_end|>", "")
|
263 |
+
time.sleep(0.01)
|
264 |
+
yield buffer
|
265 |
+
else:
|
266 |
+
|
267 |
+
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
268 |
+
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
269 |
+
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
270 |
+
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
271 |
+
input_ids = input_ids.to(model.device)
|
272 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
273 |
+
generation_kwargs = {
|
274 |
+
"input_ids": input_ids,
|
275 |
+
"streamer": streamer,
|
276 |
+
"max_new_tokens": max_new_tokens,
|
277 |
+
"do_sample": True,
|
278 |
+
"top_p": top_p,
|
279 |
+
"top_k": top_k,
|
280 |
+
"temperature": temperature,
|
281 |
+
"num_beams": 1,
|
282 |
+
"repetition_penalty": repetition_penalty,
|
283 |
+
}
|
284 |
+
t = Thread(target=model.generate, kwargs=generation_kwargs)
|
285 |
+
t.start()
|
286 |
+
|
287 |
+
outputs = []
|
288 |
+
for new_text in streamer:
|
289 |
+
outputs.append(new_text)
|
290 |
+
yield "".join(outputs)
|
291 |
+
|
292 |
+
final_response = "".join(outputs)
|
293 |
+
yield final_response
|
294 |
+
|
295 |
+
# If TTS was requested, convert the final response to speech.
|
296 |
+
if is_tts and voice:
|
297 |
+
output_file = asyncio.run(text_to_speech(final_response, voice))
|
298 |
+
yield gr.Audio(output_file, autoplay=True)
|
299 |
+
|
300 |
+
demo = gr.ChatInterface(
|
301 |
+
fn=generate,
|
302 |
+
additional_inputs=[
|
303 |
+
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
|
304 |
+
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
|
305 |
+
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
|
306 |
+
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
|
307 |
+
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
|
308 |
+
],
|
309 |
+
examples=[
|
310 |
+
["@tts1 Who is Nikola Tesla, and why did he die?"],
|
311 |
+
[{"text": "Extract JSON from the image", "files": ["examples/document.jpg"]}],
|
312 |
+
[{"text": "summarize the letter", "files": ["examples/1.png"]}],
|
313 |
+
["@image Chocolate dripping from a donut against a yellow background, in the style of brocore, hyper-realistic"],
|
314 |
+
["Write a Python function to check if a number is prime."],
|
315 |
+
["@tts2 What causes rainbows to form?"],
|
316 |
+
|
317 |
+
],
|
318 |
+
cache_examples=False,
|
319 |
+
type="messages",
|
320 |
+
description=DESCRIPTION,
|
321 |
+
css=css,
|
322 |
+
fill_height=True,
|
323 |
+
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image"], file_count="multiple"),
|
324 |
+
stop_btn="Stop Generation",
|
325 |
+
multimodal=True,
|
326 |
+
)
|
327 |
+
|
328 |
+
if __name__ == "__main__":
|
329 |
+
# To create a public link, set share=True in launch().
|
330 |
+
demo.queue(max_size=20).launch(share=True)
|
requirements.txt
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
huggingface_hub
|
2 |
+
git+https://github.com/huggingface/transformers.git
|
3 |
+
gradio_client==1.3.0
|
4 |
+
qwen-vl-utils==0.0.2
|
5 |
+
transformers-stream-generator==0.0.4
|
6 |
+
accelerate
|
7 |
+
diffusers
|
8 |
+
peft
|
9 |
+
trimesh
|
10 |
+
torch==2.4.0
|
11 |
+
torchvision==0.19.0
|
12 |
+
sentencepiece
|
13 |
+
spaces
|
14 |
+
requests
|
15 |
+
safetensors
|
16 |
+
edge-tts
|
17 |
+
audiosegment
|
18 |
+
asyncio
|
19 |
+
scipy
|
20 |
+
librosa
|
21 |
+
pydub
|
22 |
+
ffmpeg-python
|
23 |
+
av
|