Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,9 @@ import uuid
|
|
4 |
import json
|
5 |
import time
|
6 |
import asyncio
|
|
|
7 |
from threading import Thread
|
|
|
8 |
|
9 |
import gradio as gr
|
10 |
import spaces
|
@@ -12,6 +14,7 @@ import torch
|
|
12 |
import numpy as np
|
13 |
from PIL import Image
|
14 |
import edge_tts
|
|
|
15 |
|
16 |
from transformers import (
|
17 |
AutoModelForCausalLM,
|
@@ -21,11 +24,99 @@ from transformers import (
|
|
21 |
AutoProcessor,
|
22 |
)
|
23 |
from transformers.image_utils import load_image
|
|
|
24 |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
DESCRIPTION = """
|
28 |
-
#
|
29 |
"""
|
30 |
|
31 |
css = '''
|
@@ -48,9 +139,12 @@ MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
|
48 |
|
49 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
50 |
|
51 |
-
#
|
52 |
-
#
|
53 |
-
|
|
|
|
|
|
|
54 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
55 |
model = AutoModelForCausalLM.from_pretrained(
|
56 |
model_id,
|
@@ -59,11 +153,13 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
59 |
)
|
60 |
model.eval()
|
61 |
|
|
|
62 |
TTS_VOICES = [
|
63 |
"en-US-JennyNeural", # @tts1
|
64 |
"en-US-GuyNeural", # @tts2
|
65 |
]
|
66 |
|
|
|
67 |
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
68 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
69 |
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
@@ -72,12 +168,20 @@ model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
72 |
torch_dtype=torch.float16
|
73 |
).to("cuda").eval()
|
74 |
|
|
|
|
|
|
|
|
|
75 |
async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
|
76 |
"""Convert text to speech using Edge TTS and save as MP3"""
|
77 |
communicate = edge_tts.Communicate(text, voice)
|
78 |
await communicate.save(output_file)
|
79 |
return output_file
|
80 |
|
|
|
|
|
|
|
|
|
81 |
def clean_chat_history(chat_history):
|
82 |
"""
|
83 |
Filter out any chat entries whose "content" is not a string.
|
@@ -89,14 +193,16 @@ def clean_chat_history(chat_history):
|
|
89 |
cleaned.append(msg)
|
90 |
return cleaned
|
91 |
|
92 |
-
#
|
|
|
|
|
|
|
93 |
MODEL_ID_SD = os.getenv("MODEL_VAL_PATH") # SDXL Model repository path via env variable
|
94 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
95 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
96 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
97 |
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) # For batched image generation
|
98 |
|
99 |
-
# Load the SDXL pipeline
|
100 |
sd_pipe = StableDiffusionXLPipeline.from_pretrained(
|
101 |
MODEL_ID_SD,
|
102 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
@@ -105,31 +211,21 @@ sd_pipe = StableDiffusionXLPipeline.from_pretrained(
|
|
105 |
).to(device)
|
106 |
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
|
107 |
|
108 |
-
# Ensure that the text encoder is in half-precision if using CUDA.
|
109 |
if torch.cuda.is_available():
|
110 |
sd_pipe.text_encoder = sd_pipe.text_encoder.half()
|
111 |
|
112 |
-
# Optional: compile the model for speedup if enabled
|
113 |
if USE_TORCH_COMPILE:
|
114 |
sd_pipe.compile()
|
115 |
|
116 |
-
# Optional: offload parts of the model to CPU if needed
|
117 |
if ENABLE_CPU_OFFLOAD:
|
118 |
sd_pipe.enable_model_cpu_offload()
|
119 |
|
120 |
-
MAX_SEED = np.iinfo(np.int32).max
|
121 |
-
|
122 |
def save_image(img: Image.Image) -> str:
|
123 |
"""Save a PIL image with a unique filename and return the path."""
|
124 |
unique_name = str(uuid.uuid4()) + ".png"
|
125 |
img.save(unique_name)
|
126 |
return unique_name
|
127 |
|
128 |
-
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
129 |
-
if randomize_seed:
|
130 |
-
seed = random.randint(0, MAX_SEED)
|
131 |
-
return seed
|
132 |
-
|
133 |
@spaces.GPU(duration=60, enable_queue=True)
|
134 |
def generate_image_fn(
|
135 |
prompt: str,
|
@@ -169,7 +265,6 @@ def generate_image_fn(
|
|
169 |
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
|
170 |
if "negative_prompt" in batch_options and batch_options["negative_prompt"] is not None:
|
171 |
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
|
172 |
-
# Wrap the pipeline call in autocast if using CUDA
|
173 |
if device.type == "cuda":
|
174 |
with torch.autocast("cuda", dtype=torch.float16):
|
175 |
outputs = sd_pipe(**batch_options)
|
@@ -179,6 +274,31 @@ def generate_image_fn(
|
|
179 |
image_paths = [save_image(img) for img in images]
|
180 |
return image_paths, seed
|
181 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
@spaces.GPU
|
183 |
def generate(
|
184 |
input_dict: dict,
|
@@ -190,16 +310,39 @@ def generate(
|
|
190 |
repetition_penalty: float = 1.2,
|
191 |
):
|
192 |
"""
|
193 |
-
Generates chatbot responses with support for multimodal input, TTS,
|
|
|
|
|
194 |
Special commands:
|
195 |
- "@tts1" or "@tts2": triggers text-to-speech.
|
196 |
- "@image": triggers image generation using the SDXL pipeline.
|
|
|
197 |
"""
|
198 |
text = input_dict["text"]
|
199 |
files = input_dict.get("files", [])
|
200 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
201 |
if text.strip().lower().startswith("@image"):
|
202 |
-
# Remove the "@image" tag and use the rest as prompt
|
203 |
prompt = text[len("@image"):].strip()
|
204 |
yield "Generating image..."
|
205 |
image_paths, used_seed = generate_image_fn(
|
@@ -215,10 +358,10 @@ def generate(
|
|
215 |
use_resolution_binning=True,
|
216 |
num_images=1,
|
217 |
)
|
218 |
-
# Yield the generated image so that the chat interface displays it.
|
219 |
yield gr.Image(image_paths[0])
|
220 |
-
return
|
221 |
|
|
|
222 |
tts_prefix = "@tts"
|
223 |
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3))
|
224 |
voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
|
@@ -226,11 +369,9 @@ def generate(
|
|
226 |
if is_tts and voice_index:
|
227 |
voice = TTS_VOICES[voice_index - 1]
|
228 |
text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
|
229 |
-
# Clear previous chat history for a fresh TTS request.
|
230 |
conversation = [{"role": "user", "content": text}]
|
231 |
else:
|
232 |
voice = None
|
233 |
-
# Remove any stray @tts tags and build the conversation history.
|
234 |
text = text.replace(tts_prefix, "").strip()
|
235 |
conversation = clean_chat_history(chat_history)
|
236 |
conversation.append({"role": "user", "content": text})
|
@@ -264,7 +405,6 @@ def generate(
|
|
264 |
time.sleep(0.01)
|
265 |
yield buffer
|
266 |
else:
|
267 |
-
|
268 |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
269 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
270 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
@@ -293,11 +433,14 @@ def generate(
|
|
293 |
final_response = "".join(outputs)
|
294 |
yield final_response
|
295 |
|
296 |
-
# If TTS was requested, convert the final response to speech.
|
297 |
if is_tts and voice:
|
298 |
output_file = asyncio.run(text_to_speech(final_response, voice))
|
299 |
yield gr.Audio(output_file, autoplay=True)
|
300 |
|
|
|
|
|
|
|
|
|
301 |
demo = gr.ChatInterface(
|
302 |
fn=generate,
|
303 |
additional_inputs=[
|
@@ -309,12 +452,11 @@ demo = gr.ChatInterface(
|
|
309 |
],
|
310 |
examples=[
|
311 |
["@tts1 Who is Nikola Tesla, and why did he die?"],
|
312 |
-
[
|
313 |
[{"text": "summarize the letter", "files": ["examples/1.png"]}],
|
314 |
["@image Chocolate dripping from a donut against a yellow background, in the style of brocore, hyper-realistic"],
|
315 |
["Write a Python function to check if a number is prime."],
|
316 |
["@tts2 What causes rainbows to form?"],
|
317 |
-
|
318 |
],
|
319 |
cache_examples=False,
|
320 |
type="messages",
|
|
|
4 |
import json
|
5 |
import time
|
6 |
import asyncio
|
7 |
+
import tempfile
|
8 |
from threading import Thread
|
9 |
+
import base64
|
10 |
|
11 |
import gradio as gr
|
12 |
import spaces
|
|
|
14 |
import numpy as np
|
15 |
from PIL import Image
|
16 |
import edge_tts
|
17 |
+
import trimesh
|
18 |
|
19 |
from transformers import (
|
20 |
AutoModelForCausalLM,
|
|
|
24 |
AutoProcessor,
|
25 |
)
|
26 |
from transformers.image_utils import load_image
|
27 |
+
|
28 |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
29 |
+
from diffusers import ShapEImg2ImgPipeline, ShapEPipeline
|
30 |
+
from diffusers.utils import export_to_ply
|
31 |
+
|
32 |
+
# -----------------------------------------------------------------------------
|
33 |
+
# Global constants and helper functions
|
34 |
+
# -----------------------------------------------------------------------------
|
35 |
+
|
36 |
+
MAX_SEED = np.iinfo(np.int32).max
|
37 |
+
|
38 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
39 |
+
if randomize_seed:
|
40 |
+
seed = random.randint(0, MAX_SEED)
|
41 |
+
return seed
|
42 |
|
43 |
+
def glb_to_data_url(glb_path: str) -> str:
|
44 |
+
"""
|
45 |
+
Reads a GLB file from disk and returns a data URL with a base64 encoded representation.
|
46 |
+
This data URL can be used as the `src` for an HTML <model-viewer> tag.
|
47 |
+
"""
|
48 |
+
with open(glb_path, "rb") as f:
|
49 |
+
data = f.read()
|
50 |
+
b64_data = base64.b64encode(data).decode("utf-8")
|
51 |
+
return f"data:model/gltf-binary;base64,{b64_data}"
|
52 |
+
|
53 |
+
# -----------------------------------------------------------------------------
|
54 |
+
# Model class for Text-to-3D Generation (ShapE)
|
55 |
+
# -----------------------------------------------------------------------------
|
56 |
+
|
57 |
+
class Model:
|
58 |
+
def __init__(self):
|
59 |
+
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
60 |
+
self.pipe = ShapEPipeline.from_pretrained("openai/shap-e", torch_dtype=torch.float16)
|
61 |
+
self.pipe.to(self.device)
|
62 |
+
# Ensure the text encoder is in half precision to avoid dtype mismatches.
|
63 |
+
if torch.cuda.is_available():
|
64 |
+
try:
|
65 |
+
self.pipe.text_encoder = self.pipe.text_encoder.half()
|
66 |
+
except AttributeError:
|
67 |
+
pass
|
68 |
+
|
69 |
+
self.pipe_img = ShapEImg2ImgPipeline.from_pretrained("openai/shap-e-img2img", torch_dtype=torch.float16)
|
70 |
+
self.pipe_img.to(self.device)
|
71 |
+
# Use getattr with a default value to avoid AttributeError if text_encoder is missing.
|
72 |
+
if torch.cuda.is_available():
|
73 |
+
text_encoder_img = getattr(self.pipe_img, "text_encoder", None)
|
74 |
+
if text_encoder_img is not None:
|
75 |
+
self.pipe_img.text_encoder = text_encoder_img.half()
|
76 |
+
|
77 |
+
def to_glb(self, ply_path: str) -> str:
|
78 |
+
mesh = trimesh.load(ply_path)
|
79 |
+
# Rotate the mesh for proper orientation
|
80 |
+
rot = trimesh.transformations.rotation_matrix(-np.pi / 2, [1, 0, 0])
|
81 |
+
mesh.apply_transform(rot)
|
82 |
+
rot = trimesh.transformations.rotation_matrix(np.pi, [0, 1, 0])
|
83 |
+
mesh.apply_transform(rot)
|
84 |
+
mesh_path = tempfile.NamedTemporaryFile(suffix=".glb", delete=False)
|
85 |
+
mesh.export(mesh_path.name, file_type="glb")
|
86 |
+
return mesh_path.name
|
87 |
+
|
88 |
+
def run_text(self, prompt: str, seed: int = 0, guidance_scale: float = 15.0, num_steps: int = 64) -> str:
|
89 |
+
generator = torch.Generator(device=self.device).manual_seed(seed)
|
90 |
+
images = self.pipe(
|
91 |
+
prompt,
|
92 |
+
generator=generator,
|
93 |
+
guidance_scale=guidance_scale,
|
94 |
+
num_inference_steps=num_steps,
|
95 |
+
output_type="mesh",
|
96 |
+
).images
|
97 |
+
ply_path = tempfile.NamedTemporaryFile(suffix=".ply", delete=False, mode="w+b")
|
98 |
+
export_to_ply(images[0], ply_path.name)
|
99 |
+
return self.to_glb(ply_path.name)
|
100 |
+
|
101 |
+
def run_image(self, image: Image.Image, seed: int = 0, guidance_scale: float = 3.0, num_steps: int = 64) -> str:
|
102 |
+
generator = torch.Generator(device=self.device).manual_seed(seed)
|
103 |
+
images = self.pipe_img(
|
104 |
+
image,
|
105 |
+
generator=generator,
|
106 |
+
guidance_scale=guidance_scale,
|
107 |
+
num_inference_steps=num_steps,
|
108 |
+
output_type="mesh",
|
109 |
+
).images
|
110 |
+
ply_path = tempfile.NamedTemporaryFile(suffix=".ply", delete=False, mode="w+b")
|
111 |
+
export_to_ply(images[0], ply_path.name)
|
112 |
+
return self.to_glb(ply_path.name)
|
113 |
+
|
114 |
+
# -----------------------------------------------------------------------------
|
115 |
+
# Gradio UI configuration
|
116 |
+
# -----------------------------------------------------------------------------
|
117 |
|
118 |
DESCRIPTION = """
|
119 |
+
# QwQ Edge 💬
|
120 |
"""
|
121 |
|
122 |
css = '''
|
|
|
139 |
|
140 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
141 |
|
142 |
+
# -----------------------------------------------------------------------------
|
143 |
+
# Load Models and Pipelines for Chat, Image, and Multimodal Processing
|
144 |
+
# -----------------------------------------------------------------------------
|
145 |
+
|
146 |
+
# Load the text-only model and tokenizer (for pure text chat)
|
147 |
+
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
|
148 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
149 |
model = AutoModelForCausalLM.from_pretrained(
|
150 |
model_id,
|
|
|
153 |
)
|
154 |
model.eval()
|
155 |
|
156 |
+
# Voices for text-to-speech
|
157 |
TTS_VOICES = [
|
158 |
"en-US-JennyNeural", # @tts1
|
159 |
"en-US-GuyNeural", # @tts2
|
160 |
]
|
161 |
|
162 |
+
# Load multimodal processor and model (e.g. for OCR and image processing)
|
163 |
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
164 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
165 |
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
|
168 |
torch_dtype=torch.float16
|
169 |
).to("cuda").eval()
|
170 |
|
171 |
+
# -----------------------------------------------------------------------------
|
172 |
+
# Asynchronous text-to-speech
|
173 |
+
# -----------------------------------------------------------------------------
|
174 |
+
|
175 |
async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
|
176 |
"""Convert text to speech using Edge TTS and save as MP3"""
|
177 |
communicate = edge_tts.Communicate(text, voice)
|
178 |
await communicate.save(output_file)
|
179 |
return output_file
|
180 |
|
181 |
+
# -----------------------------------------------------------------------------
|
182 |
+
# Utility function to clean conversation history
|
183 |
+
# -----------------------------------------------------------------------------
|
184 |
+
|
185 |
def clean_chat_history(chat_history):
|
186 |
"""
|
187 |
Filter out any chat entries whose "content" is not a string.
|
|
|
193 |
cleaned.append(msg)
|
194 |
return cleaned
|
195 |
|
196 |
+
# -----------------------------------------------------------------------------
|
197 |
+
# Stable Diffusion XL Pipeline for Image Generation
|
198 |
+
# -----------------------------------------------------------------------------
|
199 |
+
|
200 |
MODEL_ID_SD = os.getenv("MODEL_VAL_PATH") # SDXL Model repository path via env variable
|
201 |
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
202 |
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
203 |
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
204 |
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1")) # For batched image generation
|
205 |
|
|
|
206 |
sd_pipe = StableDiffusionXLPipeline.from_pretrained(
|
207 |
MODEL_ID_SD,
|
208 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
|
|
211 |
).to(device)
|
212 |
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
|
213 |
|
|
|
214 |
if torch.cuda.is_available():
|
215 |
sd_pipe.text_encoder = sd_pipe.text_encoder.half()
|
216 |
|
|
|
217 |
if USE_TORCH_COMPILE:
|
218 |
sd_pipe.compile()
|
219 |
|
|
|
220 |
if ENABLE_CPU_OFFLOAD:
|
221 |
sd_pipe.enable_model_cpu_offload()
|
222 |
|
|
|
|
|
223 |
def save_image(img: Image.Image) -> str:
|
224 |
"""Save a PIL image with a unique filename and return the path."""
|
225 |
unique_name = str(uuid.uuid4()) + ".png"
|
226 |
img.save(unique_name)
|
227 |
return unique_name
|
228 |
|
|
|
|
|
|
|
|
|
|
|
229 |
@spaces.GPU(duration=60, enable_queue=True)
|
230 |
def generate_image_fn(
|
231 |
prompt: str,
|
|
|
265 |
batch_options["prompt"] = options["prompt"][i:i+BATCH_SIZE]
|
266 |
if "negative_prompt" in batch_options and batch_options["negative_prompt"] is not None:
|
267 |
batch_options["negative_prompt"] = options["negative_prompt"][i:i+BATCH_SIZE]
|
|
|
268 |
if device.type == "cuda":
|
269 |
with torch.autocast("cuda", dtype=torch.float16):
|
270 |
outputs = sd_pipe(**batch_options)
|
|
|
274 |
image_paths = [save_image(img) for img in images]
|
275 |
return image_paths, seed
|
276 |
|
277 |
+
# -----------------------------------------------------------------------------
|
278 |
+
# Text-to-3D Generation using the ShapE Pipeline
|
279 |
+
# -----------------------------------------------------------------------------
|
280 |
+
|
281 |
+
@spaces.GPU(duration=120, enable_queue=True)
|
282 |
+
def generate_3d_fn(
|
283 |
+
prompt: str,
|
284 |
+
seed: int = 1,
|
285 |
+
guidance_scale: float = 15.0,
|
286 |
+
num_steps: int = 64,
|
287 |
+
randomize_seed: bool = False,
|
288 |
+
):
|
289 |
+
"""
|
290 |
+
Generate a 3D model from text using the ShapE pipeline.
|
291 |
+
Returns a tuple of (glb_file_path, used_seed).
|
292 |
+
"""
|
293 |
+
seed = int(randomize_seed_fn(seed, randomize_seed))
|
294 |
+
model3d = Model()
|
295 |
+
glb_path = model3d.run_text(prompt, seed=seed, guidance_scale=guidance_scale, num_steps=num_steps)
|
296 |
+
return glb_path, seed
|
297 |
+
|
298 |
+
# -----------------------------------------------------------------------------
|
299 |
+
# Chat Generation Function with support for @tts, @image, and @3d commands
|
300 |
+
# -----------------------------------------------------------------------------
|
301 |
+
|
302 |
@spaces.GPU
|
303 |
def generate(
|
304 |
input_dict: dict,
|
|
|
310 |
repetition_penalty: float = 1.2,
|
311 |
):
|
312 |
"""
|
313 |
+
Generates chatbot responses with support for multimodal input, TTS, image generation,
|
314 |
+
and 3D model generation.
|
315 |
+
|
316 |
Special commands:
|
317 |
- "@tts1" or "@tts2": triggers text-to-speech.
|
318 |
- "@image": triggers image generation using the SDXL pipeline.
|
319 |
+
- "@3d": triggers 3D model generation using the ShapE pipeline.
|
320 |
"""
|
321 |
text = input_dict["text"]
|
322 |
files = input_dict.get("files", [])
|
323 |
|
324 |
+
# --- 3D Generation branch ---
|
325 |
+
if text.strip().lower().startswith("@3d"):
|
326 |
+
prompt = text[len("@3d"):].strip()
|
327 |
+
yield "Generating 3D model..."
|
328 |
+
glb_path, used_seed = generate_3d_fn(
|
329 |
+
prompt=prompt,
|
330 |
+
seed=1,
|
331 |
+
guidance_scale=15.0,
|
332 |
+
num_steps=64,
|
333 |
+
randomize_seed=True,
|
334 |
+
)
|
335 |
+
# Convert the GLB file to a base64 data URL and embed it in an HTML <model-viewer> tag.
|
336 |
+
data_url = glb_to_data_url(glb_path)
|
337 |
+
html_output = f'''
|
338 |
+
<model-viewer src="{data_url}" alt="3D Model" auto-rotate camera-controls style="width: 100%; height: 400px;"></model-viewer>
|
339 |
+
<script type="module" src="https://unpkg.com/@google/model-viewer/dist/model-viewer.min.js"></script>
|
340 |
+
'''
|
341 |
+
yield gr.HTML(html_output)
|
342 |
+
return
|
343 |
+
|
344 |
+
# --- Image Generation branch ---
|
345 |
if text.strip().lower().startswith("@image"):
|
|
|
346 |
prompt = text[len("@image"):].strip()
|
347 |
yield "Generating image..."
|
348 |
image_paths, used_seed = generate_image_fn(
|
|
|
358 |
use_resolution_binning=True,
|
359 |
num_images=1,
|
360 |
)
|
|
|
361 |
yield gr.Image(image_paths[0])
|
362 |
+
return
|
363 |
|
364 |
+
# --- Text and TTS branch ---
|
365 |
tts_prefix = "@tts"
|
366 |
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3))
|
367 |
voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
|
|
|
369 |
if is_tts and voice_index:
|
370 |
voice = TTS_VOICES[voice_index - 1]
|
371 |
text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
|
|
|
372 |
conversation = [{"role": "user", "content": text}]
|
373 |
else:
|
374 |
voice = None
|
|
|
375 |
text = text.replace(tts_prefix, "").strip()
|
376 |
conversation = clean_chat_history(chat_history)
|
377 |
conversation.append({"role": "user", "content": text})
|
|
|
405 |
time.sleep(0.01)
|
406 |
yield buffer
|
407 |
else:
|
|
|
408 |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
409 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
410 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
|
|
433 |
final_response = "".join(outputs)
|
434 |
yield final_response
|
435 |
|
|
|
436 |
if is_tts and voice:
|
437 |
output_file = asyncio.run(text_to_speech(final_response, voice))
|
438 |
yield gr.Audio(output_file, autoplay=True)
|
439 |
|
440 |
+
# -----------------------------------------------------------------------------
|
441 |
+
# Gradio Chat Interface Setup and Launch
|
442 |
+
# -----------------------------------------------------------------------------
|
443 |
+
|
444 |
demo = gr.ChatInterface(
|
445 |
fn=generate,
|
446 |
additional_inputs=[
|
|
|
452 |
],
|
453 |
examples=[
|
454 |
["@tts1 Who is Nikola Tesla, and why did he die?"],
|
455 |
+
["@3d A birthday cupcake with cherry"],
|
456 |
[{"text": "summarize the letter", "files": ["examples/1.png"]}],
|
457 |
["@image Chocolate dripping from a donut against a yellow background, in the style of brocore, hyper-realistic"],
|
458 |
["Write a Python function to check if a number is prime."],
|
459 |
["@tts2 What causes rainbows to form?"],
|
|
|
460 |
],
|
461 |
cache_examples=False,
|
462 |
type="messages",
|