Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -9,7 +9,6 @@ from threading import Thread
|
|
9 |
import base64
|
10 |
import shutil
|
11 |
import re
|
12 |
-
from io import BytesIO
|
13 |
|
14 |
import gradio as gr
|
15 |
import spaces
|
@@ -18,6 +17,7 @@ import numpy as np
|
|
18 |
from PIL import Image
|
19 |
import edge_tts
|
20 |
import trimesh
|
|
|
21 |
|
22 |
import supervision as sv
|
23 |
from ultralytics import YOLO as YOLODetector
|
@@ -36,17 +36,7 @@ from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
|
36 |
from diffusers import ShapEImg2ImgPipeline, ShapEPipeline
|
37 |
from diffusers.utils import export_to_ply
|
38 |
|
39 |
-
#
|
40 |
-
import soundfile as sf
|
41 |
-
|
42 |
-
# Install additional dependencies if needed
|
43 |
-
os.system('pip install backoff')
|
44 |
-
|
45 |
-
# --- File validation constants ---
|
46 |
-
IMAGE_EXTENSIONS = ['.jpg', '.jpeg', '.png', '.bmp', '.gif']
|
47 |
-
AUDIO_EXTENSIONS = ['.wav', '.mp3', '.flac', '.ogg']
|
48 |
-
|
49 |
-
# --- Global constants and helper functions ---
|
50 |
|
51 |
MAX_SEED = np.iinfo(np.int32).max
|
52 |
|
@@ -56,26 +46,12 @@ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
|
56 |
return seed
|
57 |
|
58 |
def glb_to_data_url(glb_path: str) -> str:
|
59 |
-
"""
|
60 |
-
Reads a GLB file from disk and returns a data URL with a base64 encoded representation.
|
61 |
-
"""
|
62 |
with open(glb_path, "rb") as f:
|
63 |
data = f.read()
|
64 |
b64_data = base64.b64encode(data).decode("utf-8")
|
65 |
return f"data:model/gltf-binary;base64,{b64_data}"
|
66 |
|
67 |
-
|
68 |
-
"""
|
69 |
-
Loads an audio file. If file is a string path, it reads directly.
|
70 |
-
Otherwise, assumes file is a file-like object.
|
71 |
-
"""
|
72 |
-
if isinstance(file, str):
|
73 |
-
audio, samplerate = sf.read(file)
|
74 |
-
else:
|
75 |
-
audio, samplerate = sf.read(BytesIO(file.read()))
|
76 |
-
return audio, samplerate
|
77 |
-
|
78 |
-
# --- Model class for Text-to-3D Generation (ShapE) ---
|
79 |
|
80 |
class Model:
|
81 |
def __init__(self):
|
@@ -131,7 +107,7 @@ class Model:
|
|
131 |
export_to_ply(images[0], ply_path.name)
|
132 |
return self.to_glb(ply_path.name)
|
133 |
|
134 |
-
#
|
135 |
|
136 |
from typing import Any, Optional
|
137 |
from smolagents.tools import Tool
|
@@ -139,43 +115,38 @@ import duckduckgo_search
|
|
139 |
|
140 |
class DuckDuckGoSearchTool(Tool):
|
141 |
name = "web_search"
|
142 |
-
description = "Performs a duckduckgo web search
|
143 |
-
inputs = {'query': {'type': 'string', 'description': 'The search query
|
144 |
output_type = "string"
|
145 |
|
146 |
def __init__(self, max_results=10, **kwargs):
|
147 |
super().__init__()
|
148 |
self.max_results = max_results
|
149 |
-
|
150 |
-
from duckduckgo_search import DDGS
|
151 |
-
except ImportError as e:
|
152 |
-
raise ImportError("Install duckduckgo-search via pip.") from e
|
153 |
self.ddgs = DDGS(**kwargs)
|
154 |
|
155 |
def forward(self, query: str) -> str:
|
156 |
results = self.ddgs.text(query, max_results=self.max_results)
|
157 |
if len(results) == 0:
|
158 |
raise Exception("No results found! Try a less restrictive query.")
|
159 |
-
postprocessed_results = [
|
|
|
|
|
160 |
return "## Search Results\n\n" + "\n\n".join(postprocessed_results)
|
161 |
|
162 |
class VisitWebpageTool(Tool):
|
163 |
name = "visit_webpage"
|
164 |
-
description = "Visits a webpage
|
165 |
-
inputs = {'url': {'type': 'string', 'description': 'The URL
|
166 |
output_type = "string"
|
167 |
|
168 |
def __init__(self, *args, **kwargs):
|
169 |
self.is_initialized = False
|
170 |
|
171 |
def forward(self, url: str) -> str:
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
from requests.exceptions import RequestException
|
176 |
-
from smolagents.utils import truncate_content
|
177 |
-
except ImportError as e:
|
178 |
-
raise ImportError("Install markdownify and requests via pip.") from e
|
179 |
try:
|
180 |
response = requests.get(url, timeout=20)
|
181 |
response.raise_for_status()
|
@@ -183,13 +154,11 @@ class VisitWebpageTool(Tool):
|
|
183 |
markdown_content = re.sub(r"\n{3,}", "\n\n", markdown_content)
|
184 |
return truncate_content(markdown_content, 10000)
|
185 |
except requests.exceptions.Timeout:
|
186 |
-
return "The request timed out.
|
187 |
-
except RequestException as e:
|
188 |
-
return f"Error fetching
|
189 |
-
except Exception as e:
|
190 |
-
return f"Unexpected error: {str(e)}"
|
191 |
|
192 |
-
#
|
193 |
|
194 |
from openai import OpenAI
|
195 |
|
@@ -200,13 +169,11 @@ ragent_client = OpenAI(
|
|
200 |
)
|
201 |
|
202 |
SYSTEM_PROMPT = """
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
Task: {task}"
|
210 |
"""
|
211 |
|
212 |
def ragent_reasoning(prompt: str, history: list[dict], max_tokens: int = 2048, temperature: float = 0.7, top_p: float = 0.95):
|
@@ -219,44 +186,23 @@ def ragent_reasoning(prompt: str, history: list[dict], max_tokens: int = 2048, t
|
|
219 |
messages.append({"role": "user", "content": prompt})
|
220 |
response = ""
|
221 |
stream = ragent_client.chat.completions.create(
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
)
|
229 |
for message in stream:
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
|
234 |
-
#
|
235 |
-
|
236 |
-
DESCRIPTION = """
|
237 |
-
# Agent Dino 🌠
|
238 |
-
"""
|
239 |
-
|
240 |
-
css = '''
|
241 |
-
h1 {
|
242 |
-
text-align: center;
|
243 |
-
display: block;
|
244 |
-
}
|
245 |
-
#duplicate-button {
|
246 |
-
margin: auto;
|
247 |
-
color: #fff;
|
248 |
-
background: #1565c0;
|
249 |
-
border-radius: 100vh;
|
250 |
-
}
|
251 |
-
'''
|
252 |
-
|
253 |
-
MAX_MAX_NEW_TOKENS = 2048
|
254 |
-
DEFAULT_MAX_NEW_TOKENS = 1024
|
255 |
-
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
256 |
|
257 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
258 |
|
259 |
-
#
|
260 |
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
|
261 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
262 |
model = AutoModelForCausalLM.from_pretrained(
|
@@ -266,12 +212,8 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
266 |
)
|
267 |
model.eval()
|
268 |
|
269 |
-
|
270 |
-
|
271 |
-
"en-US-GuyNeural",
|
272 |
-
]
|
273 |
-
|
274 |
-
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
275 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
276 |
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
277 |
MODEL_ID,
|
@@ -279,24 +221,20 @@ model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
|
279 |
torch_dtype=torch.float16
|
280 |
).to("cuda").eval()
|
281 |
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
|
|
|
294 |
MODEL_ID_SD = os.getenv("MODEL_VAL_PATH")
|
295 |
-
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4096"))
|
296 |
-
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
297 |
-
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
298 |
-
BATCH_SIZE = int(os.getenv("BATCH_SIZE", "1"))
|
299 |
-
|
300 |
sd_pipe = StableDiffusionXLPipeline.from_pretrained(
|
301 |
MODEL_ID_SD,
|
302 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
@@ -306,10 +244,33 @@ sd_pipe = StableDiffusionXLPipeline.from_pretrained(
|
|
306 |
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
|
307 |
if torch.cuda.is_available():
|
308 |
sd_pipe.text_encoder = sd_pipe.text_encoder.half()
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
313 |
|
314 |
def save_image(img: Image.Image) -> str:
|
315 |
unique_name = str(uuid.uuid4()) + ".png"
|
@@ -346,11 +307,11 @@ def generate_image_fn(
|
|
346 |
if use_resolution_binning:
|
347 |
options["use_resolution_binning"] = True
|
348 |
images = []
|
349 |
-
for i in range(0, num_images,
|
350 |
batch_options = options.copy()
|
351 |
-
batch_options["prompt"] = options["prompt"][i:i+
|
352 |
-
if "negative_prompt" in batch_options and batch_options["negative_prompt"]
|
353 |
-
batch_options["negative_prompt"] = options["negative_prompt"][i:i+
|
354 |
if device.type == "cuda":
|
355 |
with torch.autocast("cuda", dtype=torch.float16):
|
356 |
outputs = sd_pipe(**batch_options)
|
@@ -373,11 +334,6 @@ def generate_3d_fn(
|
|
373 |
glb_path = model3d.run_text(prompt, seed=seed, guidance_scale=guidance_scale, num_steps=num_steps)
|
374 |
return glb_path, seed
|
375 |
|
376 |
-
YOLO_MODEL_REPO = "strangerzonehf/Flux-Ultimate-LoRA-Collection"
|
377 |
-
YOLO_CHECKPOINT_NAME = "images/demo.pt"
|
378 |
-
yolo_model_path = hf_hub_download(repo_id=YOLO_MODEL_REPO, filename=YOLO_CHECKPOINT_NAME)
|
379 |
-
yolo_detector = YOLODetector(yolo_model_path)
|
380 |
-
|
381 |
def detect_objects(image: np.ndarray):
|
382 |
results = yolo_detector(image, verbose=False)[0]
|
383 |
detections = sv.Detections.from_ultralytics(results).with_nms()
|
@@ -388,57 +344,7 @@ def detect_objects(image: np.ndarray):
|
|
388 |
annotated_image = label_annotator.annotate(scene=annotated_image, detections=detections)
|
389 |
return Image.fromarray(annotated_image)
|
390 |
|
391 |
-
#
|
392 |
-
phi4_model_path = "microsoft/Phi-4-multimodal-instruct"
|
393 |
-
phi4_processor = AutoProcessor.from_pretrained(phi4_model_path, trust_remote_code=True)
|
394 |
-
phi4_model = AutoModelForCausalLM.from_pretrained(
|
395 |
-
phi4_model_path,
|
396 |
-
device_map="auto",
|
397 |
-
torch_dtype="auto",
|
398 |
-
trust_remote_code=True,
|
399 |
-
_attn_implementation="eager",
|
400 |
-
)
|
401 |
-
|
402 |
-
def process_phi4(input_type: str, file: str, question: str, max_new_tokens: int = 200):
|
403 |
-
"""
|
404 |
-
Process an image or audio input with the Phi-4 multimodal model.
|
405 |
-
Expects input_type to be either 'image' or 'audio' and file is a file path.
|
406 |
-
"""
|
407 |
-
user_prompt = '<|user|>'
|
408 |
-
assistant_prompt = '<|assistant|>'
|
409 |
-
prompt_suffix = '<|end|>'
|
410 |
-
|
411 |
-
if not file or not question:
|
412 |
-
yield "Please upload a file and provide a question."
|
413 |
-
return
|
414 |
-
|
415 |
-
try:
|
416 |
-
if input_type == "image":
|
417 |
-
prompt = f'{user_prompt}<|image_1|>{question}{prompt_suffix}{assistant_prompt}'
|
418 |
-
image = load_image(file)
|
419 |
-
inputs = phi4_processor(text=prompt, images=image, return_tensors='pt').to(phi4_model.device)
|
420 |
-
elif input_type == "audio":
|
421 |
-
prompt = f'{user_prompt}<|audio_1|>{question}{prompt_suffix}{assistant_prompt}'
|
422 |
-
audio, samplerate = load_audio_file(file)
|
423 |
-
inputs = phi4_processor(text=prompt, audios=[(audio, samplerate)], return_tensors='pt').to(phi4_model.device)
|
424 |
-
else:
|
425 |
-
yield "Invalid input type selected. Use 'image' or 'audio'."
|
426 |
-
return
|
427 |
-
except Exception as e:
|
428 |
-
yield f"Error loading file: {str(e)}"
|
429 |
-
return
|
430 |
-
|
431 |
-
streamer = TextIteratorStreamer(phi4_processor, skip_prompt=True, skip_special_tokens=True)
|
432 |
-
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
|
433 |
-
thread = Thread(target=phi4_model.generate, kwargs=generation_kwargs)
|
434 |
-
thread.start()
|
435 |
-
buffer = ""
|
436 |
-
yield "🤔 Thinking..."
|
437 |
-
for new_text in streamer:
|
438 |
-
buffer += new_text
|
439 |
-
buffer = buffer.replace("<|im_end|>", "")
|
440 |
-
time.sleep(0.01)
|
441 |
-
yield buffer
|
442 |
|
443 |
@spaces.GPU
|
444 |
def generate(
|
@@ -450,58 +356,13 @@ def generate(
|
|
450 |
top_k: int = 50,
|
451 |
repetition_penalty: float = 1.2,
|
452 |
):
|
453 |
-
"""
|
454 |
-
Generates chatbot responses with support for multimodal input and special commands.
|
455 |
-
Special commands include:
|
456 |
-
- "@tts1" or "@tts2": Text-to-speech.
|
457 |
-
- "@image": Image generation using the SDXL pipeline.
|
458 |
-
- "@3d": 3D model generation using the ShapE pipeline.
|
459 |
-
- "@web": Web search or webpage visit.
|
460 |
-
- "@ragent": Reasoning chain using Llama mode.
|
461 |
-
- "@yolo": Object detection using YOLO.
|
462 |
-
- "@phi4": Processes image or audio inputs with the Phi-4 model and streams text output.
|
463 |
-
"""
|
464 |
text = input_dict["text"]
|
465 |
files = input_dict.get("files", [])
|
466 |
|
467 |
-
# ---
|
468 |
-
if text.strip().lower().startswith("@phi4"):
|
469 |
-
parts = text.strip().split(maxsplit=2)
|
470 |
-
if len(parts) < 3:
|
471 |
-
yield "Error: Please provide input type and a question. Format: '@phi4 [image|audio] <your question>'"
|
472 |
-
return
|
473 |
-
input_type = parts[1].lower()
|
474 |
-
question = parts[2]
|
475 |
-
|
476 |
-
if not files or len(files) == 0:
|
477 |
-
yield "Error: Please attach an image or audio file for Phi-4 processing."
|
478 |
-
return
|
479 |
-
|
480 |
-
if len(files) > 1:
|
481 |
-
yield "Warning: Multiple files attached. Only the first file will be processed."
|
482 |
-
|
483 |
-
file_input = files[0] # This is a string path from gr.MultimodalTextbox
|
484 |
-
|
485 |
-
extension = os.path.splitext(file_input)[1].lower()
|
486 |
-
if input_type == "image" and extension not in IMAGE_EXTENSIONS:
|
487 |
-
yield f"Error: Attached file is not an image. Expected extensions: {', '.join(IMAGE_EXTENSIONS)}"
|
488 |
-
return
|
489 |
-
elif input_type == "audio" and extension not in AUDIO_EXTENSIONS:
|
490 |
-
yield f"Error: Attached file is not an audio file. Expected extensions: {', '.join(AUDIO_EXTENSIONS)}"
|
491 |
-
return
|
492 |
-
|
493 |
-
yield "🔄 Processing multimodal input with Phi-4..."
|
494 |
-
try:
|
495 |
-
for partial in process_phi4(input_type, file_input, question):
|
496 |
-
yield partial
|
497 |
-
except Exception as e:
|
498 |
-
yield f"Error processing file: {str(e)}"
|
499 |
-
return
|
500 |
-
|
501 |
-
# --- Other branches remain unchanged ---
|
502 |
if text.strip().lower().startswith("@3d"):
|
503 |
prompt = text[len("@3d"):].strip()
|
504 |
-
yield "🌀
|
505 |
glb_path, used_seed = generate_3d_fn(
|
506 |
prompt=prompt,
|
507 |
seed=1,
|
@@ -518,25 +379,20 @@ def generate(
|
|
518 |
yield gr.File(new_filepath)
|
519 |
return
|
520 |
|
|
|
521 |
if text.strip().lower().startswith("@image"):
|
522 |
prompt = text[len("@image"):].strip()
|
523 |
yield "🪧 Generating image..."
|
524 |
image_paths, used_seed = generate_image_fn(
|
525 |
prompt=prompt,
|
526 |
-
negative_prompt="",
|
527 |
-
use_negative_prompt=False,
|
528 |
seed=1,
|
529 |
-
width=1024,
|
530 |
-
height=1024,
|
531 |
-
guidance_scale=3,
|
532 |
-
num_inference_steps=25,
|
533 |
randomize_seed=True,
|
534 |
-
use_resolution_binning=True,
|
535 |
num_images=1,
|
536 |
)
|
537 |
yield gr.Image(image_paths[0])
|
538 |
return
|
539 |
|
|
|
540 |
if text.strip().lower().startswith("@web"):
|
541 |
web_command = text[len("@web"):].strip()
|
542 |
if web_command.lower().startswith("visit"):
|
@@ -547,30 +403,29 @@ def generate(
|
|
547 |
yield content
|
548 |
else:
|
549 |
query = web_command
|
550 |
-
yield "🧤 Performing
|
551 |
searcher = DuckDuckGoSearchTool()
|
552 |
results = searcher.forward(query)
|
553 |
yield results
|
554 |
return
|
555 |
|
|
|
556 |
if text.strip().lower().startswith("@ragent"):
|
557 |
prompt = text[len("@ragent"):].strip()
|
558 |
-
yield "📝 Initiating reasoning chain
|
559 |
for partial in ragent_reasoning(prompt, clean_chat_history(chat_history)):
|
560 |
yield partial
|
561 |
return
|
562 |
|
|
|
563 |
if text.strip().lower().startswith("@yolo"):
|
564 |
-
yield "🔍 Running object detection
|
565 |
if not files or len(files) == 0:
|
566 |
-
yield "Error: Please attach an image for YOLO
|
567 |
return
|
568 |
input_file = files[0]
|
569 |
try:
|
570 |
-
|
571 |
-
pil_image = Image.open(input_file)
|
572 |
-
else:
|
573 |
-
pil_image = Image.open(input_file)
|
574 |
except Exception as e:
|
575 |
yield f"Error loading image: {str(e)}"
|
576 |
return
|
@@ -579,9 +434,63 @@ def generate(
|
|
579 |
yield gr.Image(result_img)
|
580 |
return
|
581 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
582 |
tts_prefix = "@tts"
|
583 |
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3))
|
584 |
voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
|
|
|
585 |
if is_tts and voice_index:
|
586 |
voice = TTS_VOICES[voice_index - 1]
|
587 |
text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
|
@@ -591,13 +500,9 @@ def generate(
|
|
591 |
text = text.replace(tts_prefix, "").strip()
|
592 |
conversation = clean_chat_history(chat_history)
|
593 |
conversation.append({"role": "user", "content": text})
|
|
|
594 |
if files:
|
595 |
-
|
596 |
-
images = [load_image(file) for file in files]
|
597 |
-
elif len(files) == 1:
|
598 |
-
images = [load_image(files[0])]
|
599 |
-
else:
|
600 |
-
images = []
|
601 |
messages = [{
|
602 |
"role": "user",
|
603 |
"content": [
|
@@ -611,6 +516,7 @@ def generate(
|
|
611 |
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
|
612 |
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
|
613 |
thread.start()
|
|
|
614 |
buffer = ""
|
615 |
yield "🤔 Thinking..."
|
616 |
for new_text in streamer:
|
@@ -622,7 +528,7 @@ def generate(
|
|
622 |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
623 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
624 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
625 |
-
gr.Warning(f"Trimmed input
|
626 |
input_ids = input_ids.to(model.device)
|
627 |
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
628 |
generation_kwargs = {
|
@@ -638,43 +544,63 @@ def generate(
|
|
638 |
}
|
639 |
t = Thread(target=model.generate, kwargs=generation_kwargs)
|
640 |
t.start()
|
|
|
641 |
outputs = []
|
642 |
for new_text in streamer:
|
643 |
outputs.append(new_text)
|
644 |
yield "".join(outputs)
|
|
|
645 |
final_response = "".join(outputs)
|
646 |
yield final_response
|
|
|
647 |
if is_tts and voice:
|
648 |
output_file = asyncio.run(text_to_speech(final_response, voice))
|
649 |
yield gr.Audio(output_file, autoplay=True)
|
650 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
651 |
demo = gr.ChatInterface(
|
652 |
fn=generate,
|
653 |
additional_inputs=[
|
654 |
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
|
655 |
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
|
656 |
-
gr.Slider(label="Top-p
|
657 |
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
|
658 |
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
|
659 |
],
|
660 |
examples=[
|
661 |
-
[{"text": "@phi4 Solve the problem", "files": ["examples/math.webp"]}],
|
662 |
-
[{"text": "@phi4 Transcribe the audio to text.", "files": ["examples/harvard.wav"]}],
|
663 |
["@tts2 What causes rainbows to form?"],
|
664 |
["@image Chocolate dripping from a donut"],
|
665 |
["@3d A birthday cupcake with cherry"],
|
666 |
[{"text": "Summarize the letter", "files": ["examples/1.png"]}],
|
667 |
[{"text": "@yolo", "files": ["examples/yolo.jpeg"]}],
|
668 |
-
["@
|
669 |
-
["@web Is Grok-3 Beats DeepSeek-R1 at Reasoning
|
670 |
["@tts1 Explain Tower of Hanoi"],
|
|
|
|
|
671 |
],
|
672 |
cache_examples=False,
|
673 |
type="messages",
|
674 |
description=DESCRIPTION,
|
675 |
css=css,
|
676 |
fill_height=True,
|
677 |
-
textbox=gr.MultimodalTextbox(
|
|
|
|
|
|
|
|
|
|
|
678 |
stop_btn="Stop Generation",
|
679 |
multimodal=True,
|
680 |
)
|
|
|
9 |
import base64
|
10 |
import shutil
|
11 |
import re
|
|
|
12 |
|
13 |
import gradio as gr
|
14 |
import spaces
|
|
|
17 |
from PIL import Image
|
18 |
import edge_tts
|
19 |
import trimesh
|
20 |
+
import soundfile as sf # Added for audio processing with Phi-4
|
21 |
|
22 |
import supervision as sv
|
23 |
from ultralytics import YOLO as YOLODetector
|
|
|
36 |
from diffusers import ShapEImg2ImgPipeline, ShapEPipeline
|
37 |
from diffusers.utils import export_to_ply
|
38 |
|
39 |
+
# Global constants and helper functions
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
MAX_SEED = np.iinfo(np.int32).max
|
42 |
|
|
|
46 |
return seed
|
47 |
|
48 |
def glb_to_data_url(glb_path: str) -> str:
|
|
|
|
|
|
|
49 |
with open(glb_path, "rb") as f:
|
50 |
data = f.read()
|
51 |
b64_data = base64.b64encode(data).decode("utf-8")
|
52 |
return f"data:model/gltf-binary;base64,{b64_data}"
|
53 |
|
54 |
+
# Model class for Text-to-3D Generation (ShapE)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
class Model:
|
57 |
def __init__(self):
|
|
|
107 |
export_to_ply(images[0], ply_path.name)
|
108 |
return self.to_glb(ply_path.name)
|
109 |
|
110 |
+
# Web Tools using DuckDuckGo and smolagents
|
111 |
|
112 |
from typing import Any, Optional
|
113 |
from smolagents.tools import Tool
|
|
|
115 |
|
116 |
class DuckDuckGoSearchTool(Tool):
|
117 |
name = "web_search"
|
118 |
+
description = "Performs a duckduckgo web search and returns the top results."
|
119 |
+
inputs = {'query': {'type': 'string', 'description': 'The search query.'}}
|
120 |
output_type = "string"
|
121 |
|
122 |
def __init__(self, max_results=10, **kwargs):
|
123 |
super().__init__()
|
124 |
self.max_results = max_results
|
125 |
+
from duckduckgo_search import DDGS
|
|
|
|
|
|
|
126 |
self.ddgs = DDGS(**kwargs)
|
127 |
|
128 |
def forward(self, query: str) -> str:
|
129 |
results = self.ddgs.text(query, max_results=self.max_results)
|
130 |
if len(results) == 0:
|
131 |
raise Exception("No results found! Try a less restrictive query.")
|
132 |
+
postprocessed_results = [
|
133 |
+
f"[{result['title']}]({result['href']})\n{result['body']}" for result in results
|
134 |
+
]
|
135 |
return "## Search Results\n\n" + "\n\n".join(postprocessed_results)
|
136 |
|
137 |
class VisitWebpageTool(Tool):
|
138 |
name = "visit_webpage"
|
139 |
+
description = "Visits a webpage and returns its content as markdown."
|
140 |
+
inputs = {'url': {'type': 'string', 'description': 'The URL to visit.'}}
|
141 |
output_type = "string"
|
142 |
|
143 |
def __init__(self, *args, **kwargs):
|
144 |
self.is_initialized = False
|
145 |
|
146 |
def forward(self, url: str) -> str:
|
147 |
+
import requests
|
148 |
+
from markdownify import markdownify
|
149 |
+
from smolagents.utils import truncate_content
|
|
|
|
|
|
|
|
|
150 |
try:
|
151 |
response = requests.get(url, timeout=20)
|
152 |
response.raise_for_status()
|
|
|
154 |
markdown_content = re.sub(r"\n{3,}", "\n\n", markdown_content)
|
155 |
return truncate_content(markdown_content, 10000)
|
156 |
except requests.exceptions.Timeout:
|
157 |
+
return "The request timed out."
|
158 |
+
except requests.exceptions.RequestException as e:
|
159 |
+
return f"Error fetching webpage: {str(e)}"
|
|
|
|
|
160 |
|
161 |
+
# rAgent Reasoning using Llama mode OpenAI
|
162 |
|
163 |
from openai import OpenAI
|
164 |
|
|
|
169 |
)
|
170 |
|
171 |
SYSTEM_PROMPT = """
|
172 |
+
"You are an expert assistant who solves tasks using Python code. Follow these steps:
|
173 |
+
1. **Thought**: Explain your reasoning and plan.
|
174 |
+
2. **Code**: Write Python code to implement your solution.
|
175 |
+
3. **Observation**: Analyze the output and summarize results.
|
176 |
+
4. **Final Answer**: Provide a concise conclusion."
|
|
|
|
|
177 |
"""
|
178 |
|
179 |
def ragent_reasoning(prompt: str, history: list[dict], max_tokens: int = 2048, temperature: float = 0.7, top_p: float = 0.95):
|
|
|
186 |
messages.append({"role": "user", "content": prompt})
|
187 |
response = ""
|
188 |
stream = ragent_client.chat.completions.create(
|
189 |
+
model="meta-llama/Meta-Llama-3.1-8B-Instruct",
|
190 |
+
max_tokens=max_tokens,
|
191 |
+
stream=True,
|
192 |
+
temperature=temperature,
|
193 |
+
top_p=top_p,
|
194 |
+
messages=messages,
|
195 |
)
|
196 |
for message in stream:
|
197 |
+
token = message.choices[0].delta.content
|
198 |
+
response += token
|
199 |
+
yield response
|
200 |
|
201 |
+
# Load Models
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
204 |
|
205 |
+
# Text-only model
|
206 |
model_id = "prithivMLmods/FastThink-0.5B-Tiny"
|
207 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
208 |
model = AutoModelForCausalLM.from_pretrained(
|
|
|
212 |
)
|
213 |
model.eval()
|
214 |
|
215 |
+
# Multimodal model (Qwen2-VL)
|
216 |
+
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
|
|
|
|
|
|
|
|
217 |
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
218 |
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
219 |
MODEL_ID,
|
|
|
221 |
torch_dtype=torch.float16
|
222 |
).to("cuda").eval()
|
223 |
|
224 |
+
# Phi-4 Multimodal Model
|
225 |
+
phi4_model_path = "microsoft/Phi-4-multimodal-instruct"
|
226 |
+
phi4_processor = AutoProcessor.from_pretrained(phi4_model_path, trust_remote_code=True)
|
227 |
+
phi4_model = AutoModelForCausalLM.from_pretrained(
|
228 |
+
phi4_model_path,
|
229 |
+
device_map="auto",
|
230 |
+
torch_dtype="auto",
|
231 |
+
trust_remote_code=True,
|
232 |
+
_attn_implementation="eager",
|
233 |
+
)
|
234 |
+
phi4_model.eval()
|
235 |
|
236 |
+
# Stable Diffusion XL Pipeline
|
237 |
MODEL_ID_SD = os.getenv("MODEL_VAL_PATH")
|
|
|
|
|
|
|
|
|
|
|
238 |
sd_pipe = StableDiffusionXLPipeline.from_pretrained(
|
239 |
MODEL_ID_SD,
|
240 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
|
|
244 |
sd_pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(sd_pipe.scheduler.config)
|
245 |
if torch.cuda.is_available():
|
246 |
sd_pipe.text_encoder = sd_pipe.text_encoder.half()
|
247 |
+
|
248 |
+
# YOLO Object Detection
|
249 |
+
YOLO_MODEL_REPO = "strangerzonehf/Flux-Ultimate-LoRA-Collection"
|
250 |
+
YOLO_CHECKPOINT_NAME = "images/demo.pt"
|
251 |
+
yolo_model_path = hf_hub_download(repo_id=YOLO_MODEL_REPO, filename=YOLO_CHECKPOINT_NAME)
|
252 |
+
yolo_detector = YOLODetector(yolo_model_path)
|
253 |
+
|
254 |
+
# TTS Voices
|
255 |
+
TTS_VOICES = ["en-US-JennyNeural", "en-US-GuyNeural"]
|
256 |
+
|
257 |
+
MAX_MAX_NEW_TOKENS = 2048
|
258 |
+
DEFAULT_MAX_NEW_TOKENS = 1024
|
259 |
+
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
260 |
+
|
261 |
+
# Utility Functions
|
262 |
+
|
263 |
+
async def text_to_speech(text: str, voice: str, output_file="output.mp3"):
|
264 |
+
communicate = edge_tts.Communicate(text, voice)
|
265 |
+
await communicate.save(output_file)
|
266 |
+
return output_file
|
267 |
+
|
268 |
+
def clean_chat_history(chat_history):
|
269 |
+
cleaned = []
|
270 |
+
for msg in chat_history:
|
271 |
+
if isinstance(msg, dict) and isinstance(msg.get("content"), str):
|
272 |
+
cleaned.append(msg)
|
273 |
+
return cleaned
|
274 |
|
275 |
def save_image(img: Image.Image) -> str:
|
276 |
unique_name = str(uuid.uuid4()) + ".png"
|
|
|
307 |
if use_resolution_binning:
|
308 |
options["use_resolution_binning"] = True
|
309 |
images = []
|
310 |
+
for i in range(0, num_images, 1): # Simplified batching
|
311 |
batch_options = options.copy()
|
312 |
+
batch_options["prompt"] = options["prompt"][i:i+1]
|
313 |
+
if "negative_prompt" in batch_options and batch_options["negative_prompt"]:
|
314 |
+
batch_options["negative_prompt"] = options["negative_prompt"][i:i+1]
|
315 |
if device.type == "cuda":
|
316 |
with torch.autocast("cuda", dtype=torch.float16):
|
317 |
outputs = sd_pipe(**batch_options)
|
|
|
334 |
glb_path = model3d.run_text(prompt, seed=seed, guidance_scale=guidance_scale, num_steps=num_steps)
|
335 |
return glb_path, seed
|
336 |
|
|
|
|
|
|
|
|
|
|
|
337 |
def detect_objects(image: np.ndarray):
|
338 |
results = yolo_detector(image, verbose=False)[0]
|
339 |
detections = sv.Detections.from_ultralytics(results).with_nms()
|
|
|
344 |
annotated_image = label_annotator.annotate(scene=annotated_image, detections=detections)
|
345 |
return Image.fromarray(annotated_image)
|
346 |
|
347 |
+
# Chat Generation Function with @phi4 Added
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
348 |
|
349 |
@spaces.GPU
|
350 |
def generate(
|
|
|
356 |
top_k: int = 50,
|
357 |
repetition_penalty: float = 1.2,
|
358 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
359 |
text = input_dict["text"]
|
360 |
files = input_dict.get("files", [])
|
361 |
|
362 |
+
# --- 3D Generation ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
363 |
if text.strip().lower().startswith("@3d"):
|
364 |
prompt = text[len("@3d"):].strip()
|
365 |
+
yield "🌀 Generating 3D mesh GLB file..."
|
366 |
glb_path, used_seed = generate_3d_fn(
|
367 |
prompt=prompt,
|
368 |
seed=1,
|
|
|
379 |
yield gr.File(new_filepath)
|
380 |
return
|
381 |
|
382 |
+
# --- Image Generation ---
|
383 |
if text.strip().lower().startswith("@image"):
|
384 |
prompt = text[len("@image"):].strip()
|
385 |
yield "🪧 Generating image..."
|
386 |
image_paths, used_seed = generate_image_fn(
|
387 |
prompt=prompt,
|
|
|
|
|
388 |
seed=1,
|
|
|
|
|
|
|
|
|
389 |
randomize_seed=True,
|
|
|
390 |
num_images=1,
|
391 |
)
|
392 |
yield gr.Image(image_paths[0])
|
393 |
return
|
394 |
|
395 |
+
# --- Web Search/Visit ---
|
396 |
if text.strip().lower().startswith("@web"):
|
397 |
web_command = text[len("@web"):].strip()
|
398 |
if web_command.lower().startswith("visit"):
|
|
|
403 |
yield content
|
404 |
else:
|
405 |
query = web_command
|
406 |
+
yield "🧤 Performing web search..."
|
407 |
searcher = DuckDuckGoSearchTool()
|
408 |
results = searcher.forward(query)
|
409 |
yield results
|
410 |
return
|
411 |
|
412 |
+
# --- rAgent Reasoning ---
|
413 |
if text.strip().lower().startswith("@ragent"):
|
414 |
prompt = text[len("@ragent"):].strip()
|
415 |
+
yield "📝 Initiating reasoning chain..."
|
416 |
for partial in ragent_reasoning(prompt, clean_chat_history(chat_history)):
|
417 |
yield partial
|
418 |
return
|
419 |
|
420 |
+
# --- YOLO Object Detection ---
|
421 |
if text.strip().lower().startswith("@yolo"):
|
422 |
+
yield "🔍 Running object detection..."
|
423 |
if not files or len(files) == 0:
|
424 |
+
yield "Error: Please attach an image for YOLO."
|
425 |
return
|
426 |
input_file = files[0]
|
427 |
try:
|
428 |
+
pil_image = Image.open(input_file)
|
|
|
|
|
|
|
429 |
except Exception as e:
|
430 |
yield f"Error loading image: {str(e)}"
|
431 |
return
|
|
|
434 |
yield gr.Image(result_img)
|
435 |
return
|
436 |
|
437 |
+
# --- Phi-4 Multimodal Branch ---
|
438 |
+
if text.strip().lower().startswith("@phi4"):
|
439 |
+
parts = text[len("@phi4"):].strip().split(maxsplit=1)
|
440 |
+
if len(parts) < 2:
|
441 |
+
yield "Error: Specify input type and question, e.g., '@phi4 image What is this?'"
|
442 |
+
return
|
443 |
+
input_type = parts[0].lower()
|
444 |
+
question = parts[1]
|
445 |
+
|
446 |
+
if input_type not in ["image", "audio"]:
|
447 |
+
yield "Error: Input type must be 'image' or 'audio'."
|
448 |
+
return
|
449 |
+
|
450 |
+
if not files or len(files) == 0:
|
451 |
+
yield "Error: Please attach a file for Phi-4 processing."
|
452 |
+
return
|
453 |
+
|
454 |
+
if len(files) > 1:
|
455 |
+
yield "Warning: Multiple files attached. Using the first one."
|
456 |
+
|
457 |
+
file_input = files[0]
|
458 |
+
|
459 |
+
try:
|
460 |
+
if input_type == "image":
|
461 |
+
prompt = f'<|user|><|image_1|>{question}<|end|><|assistant|>'
|
462 |
+
image = Image.open(file_input)
|
463 |
+
inputs = phi4_processor(text=prompt, images=image, return_tensors='pt').to(phi4_model.device)
|
464 |
+
elif input_type == "audio":
|
465 |
+
prompt = f'<|user|><|audio_1|>{question}<|end|><|assistant|>'
|
466 |
+
audio, samplerate = sf.read(file_input)
|
467 |
+
inputs = phi4_processor(text=prompt, audios=[(audio, samplerate)], return_tensors='pt').to(phi4_model.device)
|
468 |
+
|
469 |
+
streamer = TextIteratorStreamer(phi4_processor, skip_prompt=True, skip_special_tokens=True)
|
470 |
+
generation_kwargs = {
|
471 |
+
**inputs,
|
472 |
+
"streamer": streamer,
|
473 |
+
"max_new_tokens": max_new_tokens,
|
474 |
+
}
|
475 |
+
thread = Thread(target=phi4_model.generate, kwargs=generation_kwargs)
|
476 |
+
thread.start()
|
477 |
+
|
478 |
+
buffer = ""
|
479 |
+
yield "🤔 Thinking..."
|
480 |
+
for new_text in streamer:
|
481 |
+
buffer += new_text
|
482 |
+
buffer = buffer.replace("<|im_end|>", "")
|
483 |
+
time.sleep(0.01)
|
484 |
+
yield buffer
|
485 |
+
except Exception as e:
|
486 |
+
yield f"Error processing file: {str(e)}"
|
487 |
+
return
|
488 |
+
|
489 |
+
# --- Text and TTS Branch ---
|
490 |
tts_prefix = "@tts"
|
491 |
is_tts = any(text.strip().lower().startswith(f"{tts_prefix}{i}") for i in range(1, 3))
|
492 |
voice_index = next((i for i in range(1, 3) if text.strip().lower().startswith(f"{tts_prefix}{i}")), None)
|
493 |
+
|
494 |
if is_tts and voice_index:
|
495 |
voice = TTS_VOICES[voice_index - 1]
|
496 |
text = text.replace(f"{tts_prefix}{voice_index}", "").strip()
|
|
|
500 |
text = text.replace(tts_prefix, "").strip()
|
501 |
conversation = clean_chat_history(chat_history)
|
502 |
conversation.append({"role": "user", "content": text})
|
503 |
+
|
504 |
if files:
|
505 |
+
images = [load_image(image) for image in files]
|
|
|
|
|
|
|
|
|
|
|
506 |
messages = [{
|
507 |
"role": "user",
|
508 |
"content": [
|
|
|
516 |
generation_kwargs = {**inputs, "streamer": streamer, "max_new_tokens": max_new_tokens}
|
517 |
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
|
518 |
thread.start()
|
519 |
+
|
520 |
buffer = ""
|
521 |
yield "🤔 Thinking..."
|
522 |
for new_text in streamer:
|
|
|
528 |
input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
|
529 |
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
|
530 |
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
|
531 |
+
gr.Warning(f"Trimmed input to {MAX_INPUT_TOKEN_LENGTH} tokens.")
|
532 |
input_ids = input_ids.to(model.device)
|
533 |
streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
534 |
generation_kwargs = {
|
|
|
544 |
}
|
545 |
t = Thread(target=model.generate, kwargs=generation_kwargs)
|
546 |
t.start()
|
547 |
+
|
548 |
outputs = []
|
549 |
for new_text in streamer:
|
550 |
outputs.append(new_text)
|
551 |
yield "".join(outputs)
|
552 |
+
|
553 |
final_response = "".join(outputs)
|
554 |
yield final_response
|
555 |
+
|
556 |
if is_tts and voice:
|
557 |
output_file = asyncio.run(text_to_speech(final_response, voice))
|
558 |
yield gr.Audio(output_file, autoplay=True)
|
559 |
|
560 |
+
# Gradio Interface
|
561 |
+
|
562 |
+
DESCRIPTION = """
|
563 |
+
# Agent Dino 🌠
|
564 |
+
Multimodal chatbot with text, image, audio, 3D generation, web search, reasoning, and object detection.
|
565 |
+
"""
|
566 |
+
|
567 |
+
css = '''
|
568 |
+
h1 { text-align: center; }
|
569 |
+
#duplicate-button { margin: auto; color: #fff; background: #1565c0; border-radius: 100vh; }
|
570 |
+
'''
|
571 |
+
|
572 |
demo = gr.ChatInterface(
|
573 |
fn=generate,
|
574 |
additional_inputs=[
|
575 |
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
|
576 |
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
|
577 |
+
gr.Slider(label="Top-p", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
|
578 |
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
|
579 |
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
|
580 |
],
|
581 |
examples=[
|
|
|
|
|
582 |
["@tts2 What causes rainbows to form?"],
|
583 |
["@image Chocolate dripping from a donut"],
|
584 |
["@3d A birthday cupcake with cherry"],
|
585 |
[{"text": "Summarize the letter", "files": ["examples/1.png"]}],
|
586 |
[{"text": "@yolo", "files": ["examples/yolo.jpeg"]}],
|
587 |
+
["@rAgent Explain how a binary search algorithm works."],
|
588 |
+
["@web Is Grok-3 Beats DeepSeek-R1 at Reasoning?"],
|
589 |
["@tts1 Explain Tower of Hanoi"],
|
590 |
+
[{"text": "@phi4 image What is shown in this image?", "files": ["examples/image.jpg"]}],
|
591 |
+
[{"text": "@phi4 audio Transcribe this audio.", "files": ["examples/audio.wav"]}],
|
592 |
],
|
593 |
cache_examples=False,
|
594 |
type="messages",
|
595 |
description=DESCRIPTION,
|
596 |
css=css,
|
597 |
fill_height=True,
|
598 |
+
textbox=gr.MultimodalTextbox(
|
599 |
+
label="Query Input",
|
600 |
+
file_types=["image", "audio"],
|
601 |
+
file_count="multiple",
|
602 |
+
placeholder="@tts1-♀, @tts2-♂, @image-image gen, @3d-3d mesh gen, @rAgent-coding, @web-websearch, @yolo-object detection, @phi4-multimodal, default-{text gen}{image-text-text}",
|
603 |
+
),
|
604 |
stop_btn="Stop Generation",
|
605 |
multimodal=True,
|
606 |
)
|