Spaces:
Running
Running
UshaKiranmai
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
import torch
|
4 |
+
from fpdf import FPDF
|
5 |
+
import pandas as pd
|
6 |
+
import json
|
7 |
+
import csv
|
8 |
+
|
9 |
+
# Load the summarization pipeline
|
10 |
+
text_summary = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6", torch_dtype=torch.float32)
|
11 |
+
|
12 |
+
def chunk_text(input_text, max_chunk_size=1024):
|
13 |
+
"""
|
14 |
+
Splits the input text into smaller chunks of size `max_chunk_size` or smaller.
|
15 |
+
"""
|
16 |
+
words = input_text.split()
|
17 |
+
chunks = []
|
18 |
+
current_chunk = []
|
19 |
+
|
20 |
+
for word in words:
|
21 |
+
if len(" ".join(current_chunk + [word])) <= max_chunk_size:
|
22 |
+
current_chunk.append(word)
|
23 |
+
else:
|
24 |
+
chunks.append(" ".join(current_chunk))
|
25 |
+
current_chunk = [word]
|
26 |
+
|
27 |
+
if current_chunk:
|
28 |
+
chunks.append(" ".join(current_chunk))
|
29 |
+
|
30 |
+
return chunks
|
31 |
+
|
32 |
+
def summary(input_text, max_length=130, min_length=30, output_format="Plain Text"):
|
33 |
+
"""
|
34 |
+
Summarizes the input text, handling cases where the text exceeds the model's maximum sequence length.
|
35 |
+
Supports different output formats (Plain Text, JSON, HTML, CSV, Markdown, PDF, Excel).
|
36 |
+
"""
|
37 |
+
chunks = chunk_text(input_text)
|
38 |
+
summarized_chunks = []
|
39 |
+
|
40 |
+
for chunk in chunks:
|
41 |
+
output = text_summary(chunk, max_length=max_length, min_length=min_length)
|
42 |
+
summarized_chunks.append(output[0]['summary_text'])
|
43 |
+
|
44 |
+
summary_text = " ".join(summarized_chunks)
|
45 |
+
|
46 |
+
# Return the output in the selected format
|
47 |
+
if output_format == "Plain Text":
|
48 |
+
return summary_text
|
49 |
+
|
50 |
+
elif output_format == "JSON":
|
51 |
+
result = {
|
52 |
+
"summary": summary_text,
|
53 |
+
"chunk_count": len(chunks),
|
54 |
+
"original_length": len(input_text.split()),
|
55 |
+
"summary_length": len(summary_text.split())
|
56 |
+
}
|
57 |
+
return json.dumps(result, indent=4)
|
58 |
+
|
59 |
+
elif output_format == "HTML":
|
60 |
+
html_output = f"<html><body><h2>Summary</h2><p>{summary_text}</p></body></html>"
|
61 |
+
return html_output
|
62 |
+
|
63 |
+
elif output_format == "CSV":
|
64 |
+
csv_output = "Original Text, Summary\n"
|
65 |
+
for chunk, summary in zip(chunks, summarized_chunks):
|
66 |
+
csv_output += f'"{chunk}", "{summary}"\n'
|
67 |
+
return csv_output
|
68 |
+
|
69 |
+
elif output_format == "Markdown":
|
70 |
+
markdown_output = f"## Summary\n\n{summary_text}"
|
71 |
+
return markdown_output
|
72 |
+
|
73 |
+
elif output_format == "PDF":
|
74 |
+
pdf = FPDF()
|
75 |
+
pdf.set_auto_page_break(auto=True, margin=15)
|
76 |
+
pdf.add_page()
|
77 |
+
pdf.set_font("Arial", size=12)
|
78 |
+
pdf.multi_cell(0, 10, summary_text)
|
79 |
+
pdf_output = "summary.pdf"
|
80 |
+
pdf.output(pdf_output)
|
81 |
+
return f"PDF generated: {pdf_output}"
|
82 |
+
|
83 |
+
elif output_format == "Excel":
|
84 |
+
data = {
|
85 |
+
"Original Text": chunks,
|
86 |
+
"Summary": summarized_chunks
|
87 |
+
}
|
88 |
+
df = pd.DataFrame(data)
|
89 |
+
excel_output = "summary.xlsx"
|
90 |
+
df.to_excel(excel_output, index=False)
|
91 |
+
return f"Excel file generated: {excel_output}"
|
92 |
+
|
93 |
+
# Create a Gradio interface with an additional output format selection
|
94 |
+
iface = gr.Interface(
|
95 |
+
fn=summary,
|
96 |
+
inputs=[
|
97 |
+
gr.Textbox(label="Input Text", lines=10),
|
98 |
+
gr.Slider(label="Max Length", minimum=30, maximum=300, step=10, value=130),
|
99 |
+
gr.Slider(label="Min Length", minimum=20, maximum=100, step=10, value=30),
|
100 |
+
gr.Dropdown(label="Output Format", choices=["Plain Text", "JSON", "HTML", "CSV", "Markdown", "PDF", "Excel"], value="Plain Text")
|
101 |
+
],
|
102 |
+
outputs=gr.Textbox(label="Summarized Output"),
|
103 |
+
title="Text Summarization with Advanced Output Formats"
|
104 |
+
)
|
105 |
+
|
106 |
+
iface.launch()
|