File size: 1,706 Bytes
af0c0e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from src.exception.exception import customexception
from src.logger.logger import logging
from src.components.textprocess import TextProcessor
from src.components.docchat import DocChatProcessor
from src.components.emotionanalyz import EmotionAnalyzer
from src.components.voicesynth import VoiceSynthesizer

class AvatarConfig:
    def __init__(self):
        self.image_size = 512
        self.voice_sample_rate = 22050
        self.max_text_length = 512
        # self.emotion_categories = ['negative','neutral', 'positive']

class AvatarSystem:
    def __init__(self, hf_token):
        self.config = AvatarConfig()
        self.text_processor = TextProcessor(hf_token)
        self.emotion_analyzer = EmotionAnalyzer()
        self.voice_synthesiser = VoiceSynthesizer()
        self.doc_chat_processor = DocChatProcessor(hf_token)
    
    logging.info("Avatar system initiated.")

    def process_input(self, user_input, docbot):
        # Generate response
        if docbot:
            response = self.doc_chat_processor.generate_response(user_input)
            logging.info("Docbot Text response generated.")
        else:
            response = self.text_processor.generate_response(user_input)
            logging.info("Text response generated.")

        # Analyze emotion
        emotion = self.emotion_analyzer.analyze_emotion(response)
        logging.info("Response sentiment received.")
                
        # Synthesize voice and saves as mp3 file
        self.voice_synthesiser.synthesize_speech(response)
        logging.info("Generated response saved as audio mp3 format.")
        
        return {
            'response_text': response,
            'emotion': emotion
        }