File size: 1,706 Bytes
af0c0e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 |
from src.exception.exception import customexception
from src.logger.logger import logging
from src.components.textprocess import TextProcessor
from src.components.docchat import DocChatProcessor
from src.components.emotionanalyz import EmotionAnalyzer
from src.components.voicesynth import VoiceSynthesizer
class AvatarConfig:
def __init__(self):
self.image_size = 512
self.voice_sample_rate = 22050
self.max_text_length = 512
# self.emotion_categories = ['negative','neutral', 'positive']
class AvatarSystem:
def __init__(self, hf_token):
self.config = AvatarConfig()
self.text_processor = TextProcessor(hf_token)
self.emotion_analyzer = EmotionAnalyzer()
self.voice_synthesiser = VoiceSynthesizer()
self.doc_chat_processor = DocChatProcessor(hf_token)
logging.info("Avatar system initiated.")
def process_input(self, user_input, docbot):
# Generate response
if docbot:
response = self.doc_chat_processor.generate_response(user_input)
logging.info("Docbot Text response generated.")
else:
response = self.text_processor.generate_response(user_input)
logging.info("Text response generated.")
# Analyze emotion
emotion = self.emotion_analyzer.analyze_emotion(response)
logging.info("Response sentiment received.")
# Synthesize voice and saves as mp3 file
self.voice_synthesiser.synthesize_speech(response)
logging.info("Generated response saved as audio mp3 format.")
return {
'response_text': response,
'emotion': emotion
} |