File size: 9,949 Bytes
88ae463 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from llama_cpp import Llama
from concurrent.futures import ThreadPoolExecutor, as_completed
from tqdm import tqdm
import uvicorn
from dotenv import load_dotenv
from difflib import SequenceMatcher
import re
import logging
import os
import numpy as np
from functools import lru_cache
from cachetools import TTLCache
from multiprocessing import cpu_count
import threading
import queue
# Configuraci贸n de logging para suprimir mensajes de depuraci贸n innecesarios
logging.basicConfig(level=logging.ERROR)
# Cargar variables de entorno
load_dotenv()
# Inicializar aplicaci贸n FastAPI
app = FastAPI()
# Configuraci贸n de la cach茅
cache_size = 2000
cache_ttl = 7200
cache = TTLCache(maxsize=cache_size, ttl=cache_ttl)
# Diccionario global para almacenar los modelos en RAM
global_data = {
'models': {}
}
# Configuraci贸n de los modelos
model_configs = [
{"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf", "name": "GPT-2 XL"},
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-8B Instruct"},
{"repo_id": "Ffftdtd5dtft/gemma-2-9b-it-Q2_K-GGUF", "filename": "gemma-2-9b-it-q2_k.gguf", "name": "Gemma 2-9B IT"},
{"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf", "name": "Gemma 2-27B"},
{"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-Q2_K-GGUF", "filename": "phi-3-mini-128k-instruct-q2_k.gguf", "name": "Phi-3 Mini 128K Instruct"},
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-q2_k.gguf", "name": "Meta Llama 3.1-8B"},
{"repo_id": "Ffftdtd5dtft/Qwen2-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-7b-instruct-q2_k.gguf", "name": "Qwen2 7B Instruct"},
{"repo_id": "Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF", "filename": "starcoder2-3b-q2_k.gguf", "name": "Starcoder2 3B"},
{"repo_id": "Ffftdtd5dtft/Qwen2-1.5B-Instruct-Q2_K-GGUF", "filename": "qwen2-1.5b-instruct-q2_k.gguf", "name": "Qwen2 1.5B Instruct"}
]
# Clase para gestionar modelos
class ModelManager:
def __init__(self):
self.models = {}
def load_model(self, model_config):
try:
model = Llama.from_pretrained(repo_id=model_config['repo_id'], filename=model_config['filename'])
self.models[model_config['name']] = model
return model
except Exception as e:
logging.error(f"Error al cargar el modelo {model_config['name']}: {e}")
return None
def load_all_models(self):
with ThreadPoolExecutor(max_workers=min(len(model_configs), cpu_count())) as executor:
futures = [executor.submit(self.load_model, config) for config in model_configs]
for future in tqdm(as_completed(futures), total=len(model_configs), desc="Cargando modelos", unit="modelo"):
future.result()
return self.models
# Instanciar ModelManager y cargar modelos
model_manager = ModelManager()
model_manager.load_all_models()
global_data['models'] = model_manager.models
# Clase para la solicitud de chat
class ChatRequest(BaseModel):
message: str
top_k: int = 50
top_p: float = 0.95
temperature: float = 0.7
# Funci贸n para generar respuestas de chat
@lru_cache(maxsize=20000)
def generate_chat_response(request: ChatRequest, model_name: str):
cache_key = f"{request.message}_{model_name}"
if cache_key in cache:
return cache[cache_key]
model = global_data['models'].get(model_name)
if not model:
return {"response": "Error: Modelo no encontrado.", "literal": request.message, "model_name": model_name}
try:
user_input = normalize_input(request.message)
response = model.create_chat_completion(
messages=[{"role": "user", "content": user_input}],
top_k=request.top_k,
top_p=request.top_p,
temperature=request.temperature
)
reply = response['choices'][0]['message']['content']
# Almacenar en cach茅 la respuesta
cache[cache_key] = {"response": reply, "literal": user_input, "model_name": model_name}
return cache[cache_key]
except Exception as e:
logging.error(f"Error en la generaci贸n de respuesta con el modelo {model_name}: {e}")
return {"response": f"Error: {str(e)}", "literal": user_input, "model_name": model_name}
def normalize_input(input_text):
return input_text.strip().lower()
def remove_duplicates(text):
text = re.sub(r'(Hello there, how are you\? \[/INST\]){2,}', 'Hello there, how are you? [/INST]', text)
text = re.sub(r'(How are you\? \[/INST\]){2,}', 'How are you? [/INST]', text)
text = text.replace('[/INST]', '')
lines = text.split('\n')
unique_lines = list(dict.fromkeys(lines))
return '\n'.join(unique_lines).strip()
def remove_repetitive_responses(responses):
seen = set()
unique_responses = []
for response in responses:
normalized_response = remove_duplicates(response['response'])
if normalized_response not in seen:
seen.add(normalized_response)
unique_responses.append(response)
return unique_responses
def select_best_response(responses):
responses = remove_repetitive_responses(responses)
responses = [remove_duplicates(response['response']) for response in responses]
unique_responses = list(set(responses))
coherent_responses = filter_by_coherence(unique_responses)
best_response = filter_by_similarity(coherent_responses)
return best_response
def filter_by_coherence(responses):
responses.sort(key=len, reverse=True)
return responses
def filter_by_similarity(responses):
best_response = responses[0]
for i in range(1, len(responses)):
ratio = SequenceMatcher(None, best_response, responses[i]).ratio()
if ratio < 0.9:
best_response = responses[i]
break
return best_response
def worker_function(model_name, request, response_queue):
try:
response = generate_chat_response(request, model_name)
response_queue.put((model_name, response))
except Exception as e:
logging.error(f"Error en la generaci贸n de respuesta con el modelo {model_name}: {e}")
response_queue.put((model_name, {"response": f"Error: {str(e)}", "literal": request.message, "model_name": model_name}))
@app.post("/generate_chat")
async def generate_chat(request: ChatRequest):
if not request.message.strip():
raise HTTPException(status_code=400, detail="The message cannot be empty.")
responses = []
num_models = len(global_data['models'])
response_queue = queue.Queue()
with ThreadPoolExecutor(max_workers=min(num_models, cpu_count())) as executor:
futures = [executor.submit(worker_function, model_name, request, response_queue) for model_name in global_data['models']]
for future in tqdm(as_completed(futures), total=num_models, desc="Generando respuestas", unit="modelo"):
future.result()
while not response_queue.empty():
model_name, response = response_queue.get()
responses.append(response)
best_response = select_best_response(responses)
return {
"best_response": best_response,
"all_responses": responses
}
# Cargar los modelos en la memoria RAM de manera m谩s eficiente
def pre_load_models():
for model_name, model in global_data['models'].items():
model._load_model() # M茅todo hipot茅tico para pre-cargar modelos en RAM
pre_load_models()
# Optimizaci贸n de la carga de modelos en lotes
def optimize_model_loading():
# Implementar carga de modelos en lotes con manejo eficiente de recursos
batch_size = min(len(model_configs), cpu_count() * 2)
for i in range(0, len(model_configs), batch_size):
batch_configs = model_configs[i:i + batch_size]
with ThreadPoolExecutor(max_workers=batch_size) as executor:
futures = [executor.submit(model_manager.load_model, config) for config in batch_configs]
for future in tqdm(as_completed(futures), total=len(batch_configs), desc="Optimizando carga de modelos", unit="modelo"):
try:
model = future.result()
global_data['models'][batch_configs[futures.index(future)]['name']] = model
except Exception as e:
logging.error(f"Error al optimizar la carga del modelo: {e}")
optimize_model_loading()
# Implementar t茅cnicas de paralelizaci贸n en la generaci贸n de respuestas
def parallelize_response_generation(request: ChatRequest):
response_queue = queue.Queue()
with ThreadPoolExecutor(max_workers=min(len(global_data['models']), cpu_count())) as executor:
futures = [executor.submit(worker_function, model_name, request, response_queue) for model_name in global_data['models']]
for future in tqdm(as_completed(futures), total=len(futures), desc="Generando respuestas en paralelo", unit="modelo"):
future.result()
responses = []
while not response_queue.empty():
responses.append(response_queue.get())
return responses
@app.post("/generate_chat_parallel")
async def generate_chat_parallel(request: ChatRequest):
if not request.message.strip():
raise HTTPException(status_code=400, detail="The message cannot be empty.")
responses = parallelize_response_generation(request)
best_response = select_best_response(responses)
return {
"best_response": best_response,
"all_responses": responses
}
# Optimizar el uso de memoria
def optimize_memory_usage():
import gc
gc.collect()
# Ejecutar el servidor FastAPI
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=8000)
|