Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, HTTPException, Request
|
2 |
+
import uvicorn
|
3 |
+
import requests
|
4 |
+
import os
|
5 |
+
import io
|
6 |
+
import time
|
7 |
+
import asyncio
|
8 |
+
from typing import List, Dict, Any
|
9 |
+
from tqdm import tqdm
|
10 |
+
from llama_cpp import Llama
|
11 |
+
import aiofiles
|
12 |
+
|
13 |
+
app = FastAPI()
|
14 |
+
|
15 |
+
# Configuración de los modelos
|
16 |
+
model_configs = [
|
17 |
+
{"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf", "name": "GPT-2 XL"},
|
18 |
+
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-8B Instruct"},
|
19 |
+
{"repo_id": "Ffftdtd5dtft/gemma-2-9b-it-Q2_K-GGUF", "filename": "gemma-2-9b-it-q2_k.gguf", "name": "Gemma 2-9B IT"},
|
20 |
+
{"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf", "name": "Gemma 2-27B"},
|
21 |
+
{"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-Q2_K-GGUF", "filename": "phi-3-mini-128k-instruct-q2_k.gguf", "name": "Phi-3 Mini 128K Instruct"},
|
22 |
+
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-q2_k.gguf", "name": "Meta Llama 3.1-8B"},
|
23 |
+
{"repo_id": "Ffftdtd5dtft/Qwen2-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-7b-instruct-q2_k.gguf", "name": "Qwen2 7B Instruct"},
|
24 |
+
{"repo_id": "Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF", "filename": "starcoder2-3b-q2_k.gguf", "name": "Starcoder2 3B"},
|
25 |
+
{"repo_id": "Ffftdtd5dtft/Qwen2-1.5B-Instruct-Q2_K-GGUF", "filename": "qwen2-1.5b-instruct-q2_k.gguf", "name": "Qwen2 1.5B Instruct"},
|
26 |
+
{"repo_id": "Ffftdtd5dtft/starcoder2-15b-Q2_K-GGUF", "filename": "starcoder2-15b-q2_k.gguf", "name": "Starcoder2 15B"},
|
27 |
+
{"repo_id": "Ffftdtd5dtft/gemma-2-2b-it-Q2_K-GGUF", "filename": "gemma-2-2b-it-q2_k.gguf", "name": "Gemma 2-2B IT"},
|
28 |
+
{"repo_id": "Ffftdtd5dtft/sarvam-2b-v0.5-Q2_K-GGUF", "filename": "sarvam-2b-v0.5-q2_k.gguf", "name": "Sarvam 2B v0.5"},
|
29 |
+
{"repo_id": "Ffftdtd5dtft/WizardLM-13B-Uncensored-Q2_K-GGUF", "filename": "wizardlm-13b-uncensored-q2_k.gguf", "name": "WizardLM 13B Uncensored"},
|
30 |
+
{"repo_id": "Ffftdtd5dtft/Qwen2-Math-72B-Instruct-Q2_K-GGUF", "filename": "qwen2-math-72b-instruct-q2_k.gguf", "name": "Qwen2 Math 72B Instruct"},
|
31 |
+
{"repo_id": "Ffftdtd5dtft/WizardLM-7B-Uncensored-Q2_K-GGUF", "filename": "wizardlm-7b-uncensored-q2_k.gguf", "name": "WizardLM 7B Uncensored"},
|
32 |
+
{"repo_id": "Ffftdtd5dtft/Qwen2-Math-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-math-7b-instruct-q2_k.gguf", "name": "Qwen2 Math 7B Instruct"}
|
33 |
+
]
|
34 |
+
|
35 |
+
class ModelManager:
|
36 |
+
def __init__(self):
|
37 |
+
self.models = {}
|
38 |
+
self.model_parts = {}
|
39 |
+
self.load_lock = asyncio.Lock()
|
40 |
+
self.index_lock = asyncio.Lock()
|
41 |
+
self.part_size = 1024 * 1024 # Tamaño de cada parte en bytes (1 MB)
|
42 |
+
|
43 |
+
async def download_model_to_memory(self, model_config):
|
44 |
+
url = f"https://huggingface.co/{model_config['repo_id']}/resolve/main/{model_config['filename']}"
|
45 |
+
print(f"Descargando modelo desde {url}")
|
46 |
+
try:
|
47 |
+
start_time = time.time()
|
48 |
+
response = requests.get(url)
|
49 |
+
response.raise_for_status()
|
50 |
+
end_time = time.time()
|
51 |
+
download_duration = end_time - start_time
|
52 |
+
print(f"Descarga completa para {model_config['name']} en {download_duration:.2f} segundos")
|
53 |
+
return io.BytesIO(response.content)
|
54 |
+
except requests.RequestException as e:
|
55 |
+
raise HTTPException(status_code=500, detail=f"Error al descargar el modelo: {e}")
|
56 |
+
|
57 |
+
async def save_model_to_temp_file(self, model_config):
|
58 |
+
model_file = await self.download_model_to_memory(model_config)
|
59 |
+
temp_filename = f"/tmp/{model_config['filename']}"
|
60 |
+
print(f"Guardando el modelo en {temp_filename}")
|
61 |
+
async with aiofiles.open(temp_filename, 'wb') as f:
|
62 |
+
await f.write(model_file.getvalue())
|
63 |
+
print(f"Modelo guardado en {temp_filename}")
|
64 |
+
return temp_filename
|
65 |
+
|
66 |
+
async def load_model(self, model_config):
|
67 |
+
async with self.load_lock:
|
68 |
+
try:
|
69 |
+
temp_filename = await self.save_model_to_temp_file(model_config)
|
70 |
+
start_time = time.time()
|
71 |
+
print(f"Cargando modelo desde {temp_filename}")
|
72 |
+
|
73 |
+
# Cambiar la forma en que se carga el modelo según la biblioteca que utilices
|
74 |
+
llama = Llama.from_file(temp_filename)
|
75 |
+
|
76 |
+
end_time = time.time()
|
77 |
+
load_duration = end_time - start_time
|
78 |
+
if load_duration > 0.5:
|
79 |
+
print(f"Modelo {model_config['name']} tardó {load_duration:.2f} segundos en cargar, dividiendo automáticamente")
|
80 |
+
await self.handle_large_model(temp_filename, model_config)
|
81 |
+
else:
|
82 |
+
print(f"Modelo {model_config['name']} cargado correctamente en {load_duration:.2f} segundos")
|
83 |
+
|
84 |
+
tokenizer = llama.tokenizer
|
85 |
+
model_data = {
|
86 |
+
'model': llama,
|
87 |
+
'tokenizer': tokenizer,
|
88 |
+
'pad_token': tokenizer.pad_token,
|
89 |
+
'pad_token_id': tokenizer.pad_token_id,
|
90 |
+
'eos_token': tokenizer.eos_token,
|
91 |
+
'eos_token_id': tokenizer.eos_token_id,
|
92 |
+
'bos_token': tokenizer.bos_token,
|
93 |
+
'bos_token_id': tokenizer.bos_token_id,
|
94 |
+
'unk_token': tokenizer.unk_token,
|
95 |
+
'unk_token_id': tokenizer.unk_token_id
|
96 |
+
}
|
97 |
+
|
98 |
+
self.models[model_config['name']] = model_data
|
99 |
+
except Exception as e:
|
100 |
+
print(f"Error al cargar el modelo: {e}")
|
101 |
+
|
102 |
+
async def handle_large_model(self, model_filename, model_config):
|
103 |
+
total_size = os.path.getsize(model_filename)
|
104 |
+
num_parts = (total_size + self.part_size - 1) // self.part_size
|
105 |
+
|
106 |
+
print(f"Modelo {model_config['name']} dividido en {num_parts} partes")
|
107 |
+
with open(model_filename, 'rb') as file:
|
108 |
+
for i in tqdm(range(num_parts), desc=f"Indexando {model_config['name']}"):
|
109 |
+
start = i * self.part_size
|
110 |
+
end = min(start + self.part_size, total_size)
|
111 |
+
file.seek(start)
|
112 |
+
model_part = io.BytesIO(file.read(end - start))
|
113 |
+
await self.index_model_part(model_part, i)
|
114 |
+
|
115 |
+
async def index_model_part(self, model_part, part_index):
|
116 |
+
async with self.index_lock:
|
117 |
+
part_name = f"part_{part_index}"
|
118 |
+
print(f"Indexando parte {part_index}")
|
119 |
+
temp_filename = f"/tmp/{part_name}.gguf"
|
120 |
+
async with aiofiles.open(temp_filename, 'wb') as f:
|
121 |
+
await f.write(model_part.getvalue())
|
122 |
+
print(f"Parte {part_index} indexada y guardada")
|
123 |
+
|
124 |
+
async def generate_response(self, user_input):
|
125 |
+
results = []
|
126 |
+
for model_name, model_data in self.models.items():
|
127 |
+
try:
|
128 |
+
tokenizer = model_data['tokenizer']
|
129 |
+
input_ids = tokenizer(user_input, return_tensors="pt").input_ids
|
130 |
+
outputs = model_data['model'].generate(input_ids)
|
131 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
132 |
+
|
133 |
+
# Dividir el texto generado en partes
|
134 |
+
parts = []
|
135 |
+
while len(generated_text) > 1000:
|
136 |
+
part = generated_text[:1000]
|
137 |
+
parts.append(part)
|
138 |
+
generated_text = generated_text[1000:]
|
139 |
+
parts.append(generated_text)
|
140 |
+
|
141 |
+
results.append({
|
142 |
+
'model_name': model_name,
|
143 |
+
'generated_text_parts': parts
|
144 |
+
})
|
145 |
+
except Exception as e:
|
146 |
+
print(f"Error al generar respuesta con el modelo {model_name}: {e}")
|
147 |
+
results.append({'model_name': model_name, 'error': str(e)})
|
148 |
+
|
149 |
+
return results
|
150 |
+
|
151 |
+
@app.post("/generate/")
|
152 |
+
async def generate(request: Request):
|
153 |
+
data = await request.json()
|
154 |
+
user_input = data.get('input', '')
|
155 |
+
if not user_input:
|
156 |
+
raise HTTPException(status_code=400, detail="Se requiere una entrada de usuario.")
|
157 |
+
|
158 |
+
try:
|
159 |
+
model_manager = ModelManager()
|
160 |
+
tasks = [model_manager.load_model(config) for config in model_configs]
|
161 |
+
await asyncio.gather(*tasks)
|
162 |
+
responses = await model_manager.generate_response(user_input)
|
163 |
+
return {"responses": responses}
|
164 |
+
except Exception as e:
|
165 |
+
raise HTTPException(status_code=500, detail=str(e))
|
166 |
+
|
167 |
+
def start_uvicorn():
|
168 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|
169 |
+
|
170 |
+
if __name__ == "__main__":
|
171 |
+
asyncio.run(start_uvicorn())
|