sdsdsds / app.py
Uhhy's picture
Update app.py
2b3bc71 verified
from fastapi import FastAPI, HTTPException, Request
import uvicorn
import requests
import os
import io
import asyncio
from typing import List, Dict, Any
from tqdm import tqdm
from llama_cpp import Llama
import aiofiles
import time
app = FastAPI()
# Configuración de los modelos
model_configs = [
{"repo_id": "Ffftdtd5dtft/gpt2-xl-Q2_K-GGUF", "filename": "gpt2-xl-q2_k.gguf", "name": "GPT-2 XL"},
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Instruct-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-instruct-q2_k.gguf", "name": "Meta Llama 3.1-8B Instruct"},
{"repo_id": "Ffftdtd5dtft/gemma-2-9b-it-Q2_K-GGUF", "filename": "gemma-2-9b-it-q2_k.gguf", "name": "Gemma 2-9B IT"},
{"repo_id": "Ffftdtd5dtft/gemma-2-27b-Q2_K-GGUF", "filename": "gemma-2-27b-q2_k.gguf", "name": "Gemma 2-27B"},
{"repo_id": "Ffftdtd5dtft/Phi-3-mini-128k-instruct-Q2_K-GGUF", "filename": "phi-3-mini-128k-instruct-q2_k.gguf", "name": "Phi-3 Mini 128K Instruct"},
{"repo_id": "Ffftdtd5dtft/Meta-Llama-3.1-8B-Q2_K-GGUF", "filename": "meta-llama-3.1-8b-q2_k.gguf", "name": "Meta Llama 3.1-8B"},
{"repo_id": "Ffftdtd5dtft/Qwen2-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-7b-instruct-q2_k.gguf", "name": "Qwen2 7B Instruct"},
{"repo_id": "Ffftdtd5dtft/starcoder2-3b-Q2_K-GGUF", "filename": "starcoder2-3b-q2_k.gguf", "name": "Starcoder2 3B"},
{"repo_id": "Ffftdtd5dtft/Qwen2-1.5B-Instruct-Q2_K-GGUF", "filename": "qwen2-1.5b-instruct-q2_k.gguf", "name": "Qwen2 1.5B Instruct"},
{"repo_id": "Ffftdtd5dtft/starcoder2-15b-Q2_K-GGUF", "filename": "starcoder2-15b-q2_k.gguf", "name": "Starcoder2 15B"},
{"repo_id": "Ffftdtd5dtft/gemma-2-2b-it-Q2_K-GGUF", "filename": "gemma-2-2b-it-q2_k.gguf", "name": "Gemma 2-2B IT"},
{"repo_id": "Ffftdtd5dtft/sarvam-2b-v0.5-Q2_K-GGUF", "filename": "sarvam-2b-v0.5-q2_k.gguf", "name": "Sarvam 2B v0.5"},
{"repo_id": "Ffftdtd5dtft/WizardLM-13B-Uncensored-Q2_K-GGUF", "filename": "wizardlm-13b-uncensored-q2_k.gguf", "name": "WizardLM 13B Uncensored"},
{"repo_id": "Ffftdtd5dtft/WizardLM-7B-Uncensored-Q2_K-GGUF", "filename": "wizardlm-7b-uncensored-q2_k.gguf", "name": "WizardLM 7B Uncensored"},
{"repo_id": "Ffftdtd5dtft/Qwen2-Math-7B-Instruct-Q2_K-GGUF", "filename": "qwen2-math-7b-instruct-q2_k.gguf", "name": "Qwen2 Math 7B Instruct"}
]
# Directorio para almacenar los modelos descargados
models_dir = "modelos"
class ModelManager:
def __init__(self):
self.models = {}
self.model_parts = {}
self.load_lock = asyncio.Lock()
self.index_lock = asyncio.Lock()
self.part_size = 102 * 102 # Tamaño de cada parte en bytes (1 MB)
async def download_model(self, model_config):
model_path = os.path.join(models_dir, model_config['filename'])
if not os.path.exists(model_path):
url = f"https://huggingface.co./{model_config['repo_id']}/resolve/main/{model_config['filename']}"
print(f"Descargando modelo desde {url}")
try:
start_time = time.time()
response = requests.get(url, stream=True)
response.raise_for_status()
total_size = int(response.headers.get('content-length', 0))
with open(model_path, 'wb') as f:
with tqdm(total=total_size, unit='B', unit_scale=True, desc=f"Descargando {model_config['filename']}") as pbar:
for chunk in response.iter_content(chunk_size=8192):
f.write(chunk)
pbar.update(len(chunk))
end_time = time.time()
download_duration = end_time - start_time
print(f"Descarga completa para {model_config['name']} en {download_duration:.2f} segundos")
except requests.RequestException as e:
raise HTTPException(status_code=500, detail=f"Error al descargar el modelo: {e}")
else:
print(f"Modelo {model_config['filename']} ya descargado.")
return model_path
async def load_model(self, model_config):
async with self.load_lock:
if model_config['name'] not in self.models:
try:
model_path = await self.download_model(model_config)
start_time = time.time()
print(f"Cargando modelo desde {model_path}")
llama = Llama(model_path=model_path)
end_time = time.time()
load_duration = end_time - start_time
if load_duration > 0:
print(f"Modelo {model_config['name']} tardó {load_duration:.2f} segundos en cargar, dividiendo automáticamente")
await self.handle_large_model(model_path, model_config)
else:
print(f"Modelo {model_config['name']} cargado correctamente en {load_duration:.2f} segundos")
tokenizer = llama.tokenizer
model_data = {
'model': llama,
'tokenizer': tokenizer,
'pad_token_id': tokenizer.pad_token_id,
'eos_token_id': tokenizer.eos_token_id,
'bos_token_id': tokenizer.bos_token_id,
'unk_token_id': tokenizer.unk_token_id,
'padding_token_id': tokenizer.padding_token_id
}
self.models[model_config['name']] = model_data
except Exception as e:
print(f"Error al cargar el modelo: {e}")
async def handle_large_model(self, model_filename, model_config):
total_size = os.path.getsize(model_filename)
num_parts = (total_size + self.part_size - 1) // self.part_size
print(f"Modelo {model_config['name']} dividido en {num_parts} partes")
with open(model_filename, 'rb') as file:
for i in tqdm(range(num_parts), desc=f"Indexando {model_config['name']}"):
start = i * self.part_size
end = min(start + self.part_size, total_size)
file.seek(start)
model_part = io.BytesIO(file.read(end - start))
await self.index_model_part(model_part, i)
async def index_model_part(self, model_part, part_index):
async with self.index_lock:
part_name = f"part_{part_index}"
print(f"Indexando parte {part_index}")
temp_filename = os.path.join(models_dir, f"{part_name}.gguf")
async with aiofiles.open(temp_filename, 'wb') as f:
await f.write(model_part.getvalue())
print(f"Parte {part_index} indexada y guardada")
async def generate_response(self, user_input):
results = []
for model_name, model_data in self.models.items():
try:
tokenizer = model_data['tokenizer']
input_ids = tokenizer(user_input, return_tensors="pt").input_ids
outputs = model_data['model'].generate(input_ids)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Dividir el texto generado en partes
parts = []
while len(generated_text) > 1000:
part = generated_text[:1000]
parts.append(part)
generated_text = generated_text[1000:]
parts.append(generated_text)
results.append({
'model_name': model_name,
'generated_text_parts': parts
})
except Exception as e:
print(f"Error al generar respuesta con el modelo {model_name}: {e}")
results.append({'model_name': model_name, 'error': str(e)})
return results
@app.post("/generate/")
async def generate(request: Request):
data = await request.json()
user_input = data.get('input', '')
if not user_input:
raise HTTPException(status_code=400, detail="Se requiere una entrada de usuario.")
try:
responses = await model_manager.generate_response(user_input)
return {"responses": responses}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
async def load_models_on_startup():
tasks = [model_manager.load_model(config) for config in model_configs]
await asyncio.gather(*tasks)
@app.on_event("startup")
async def startup_event():
global model_manager
model_manager = ModelManager()
await load_models_on_startup()
print("Modelos cargados correctamente. API lista.")
if __name__ == "__main__":
# Crear el directorio "modelos" si no existe
if not os.path.exists(models_dir):
os.makedirs(models_dir)
uvicorn.run(app, host="0.0.0.0", port=7860)