File size: 9,570 Bytes
0ff7286
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import json
import os
import glob
import sys
import time
from pathlib import Path
from typing import Tuple

from huggingface_hub import hf_hub_download
from PIL import Image
import gradio as gr
import torch
from fairscale.nn.model_parallel.initialize import initialize_model_parallel

from llama import LLaMA, ModelArgs, Tokenizer, Transformer, VisionModel

os.environ['CUDA_LAUNCH_BLOCKING'] = '1'

PROMPT_DICT = {
    "prompt_input": (
        "Below is an instruction that describes a task, paired with an input that provides further context. "
        "Write a response that appropriately completes the request.\n\n"
        "### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:"
    ),
    "prompt_no_input": (
        "Below is an instruction that describes a task. "
        "Write a response that appropriately completes the request.\n\n"
        "### Instruction:\n{instruction}\n\n### Response:"
    ),
}


def setup_model_parallel() -> Tuple[int, int]:
    os.environ['RANK'] = '0'
    os.environ['WORLD_SIZE'] = '1'
    os.environ['MP'] = '1'
    os.environ['MASTER_ADDR'] = '127.0.0.1'
    os.environ['MASTER_PORT'] = '2223'
    local_rank = int(os.environ.get("LOCAL_RANK", -1))
    world_size = int(os.environ.get("WORLD_SIZE", -1))

    torch.distributed.init_process_group("nccl")
    initialize_model_parallel(world_size)
    torch.cuda.set_device(local_rank)

    # seed must be the same in all processes
    torch.manual_seed(1)
    return local_rank, world_size


def load(
    ckpt0_path: str,
    ckpt1_path: str,
    param_path: str,
    tokenizer_path: str,
    instruct_adapter_path: str,
    caption_adapter_path: str,
    local_rank: int,
    world_size: int,
    max_seq_len: int,
    max_batch_size: int,
) -> LLaMA:
    start_time = time.time()
    print("Loading")
    instruct_adapter_checkpoint = torch.load(
        instruct_adapter_path, map_location="cpu")
    caption_adapter_checkpoint = torch.load(
        caption_adapter_path, map_location="cpu")
    with open(param_path, "r") as f:
        params = json.loads(f.read())

    model_args: ModelArgs = ModelArgs(
        max_seq_len=max_seq_len, max_batch_size=max_batch_size, **params
    )
    model_args.adapter_layer = int(
        instruct_adapter_checkpoint['adapter_query.weight'].shape[0] / model_args.adapter_len)
    model_args.cap_adapter_layer = int(
        caption_adapter_checkpoint['cap_adapter_query.weight'].shape[0] / model_args.cap_adapter_len)

    tokenizer = Tokenizer(model_path=tokenizer_path)
    model_args.vocab_size = tokenizer.n_words
    torch.set_default_tensor_type(torch.cuda.HalfTensor)
    model = Transformer(model_args)

    # To reduce memory usuage
    ckpt0 = torch.load(ckpt0_path, map_location='cuda')
    model.load_state_dict(ckpt0, strict=False)
    del ckpt0
    torch.cuda.empty_cache()

    ckpt1 = torch.load(ckpt1_path, map_location='cuda')
    model.load_state_dict(ckpt1, strict=False)
    del ckpt1
    torch.cuda.empty_cache()

    vision_model = VisionModel(model_args)

    torch.set_default_tensor_type(torch.FloatTensor)
    model.load_state_dict(instruct_adapter_checkpoint, strict=False)
    model.load_state_dict(caption_adapter_checkpoint, strict=False)
    vision_model.load_state_dict(caption_adapter_checkpoint, strict=False)

    generator = LLaMA(model, tokenizer, vision_model)
    print(f"Loaded in {time.time() - start_time:.2f} seconds")
    return generator


def instruct_generate(
    instruct: str,
    input: str = 'none',
    max_gen_len=512,
    temperature: float = 0.1,
    top_p: float = 0.75,
):
    if input == 'none':
        prompt = PROMPT_DICT['prompt_no_input'].format_map(
            {'instruction': instruct, 'input': ''})
    else:
        prompt = PROMPT_DICT['prompt_input'].format_map(
            {'instruction': instruct, 'input': input})

    results = generator.generate(
        [prompt], max_gen_len=max_gen_len, temperature=temperature, top_p=top_p
    )
    result = results[0].strip()
    print(result)
    return result


def caption_generate(
    img: str,
    max_gen_len=512,
    temperature: float = 0.1,
    top_p: float = 0.75,
):
    imgs = [Image.open(img).convert('RGB')]
    prompts = ["Generate caption of this image :",] * len(imgs)

    results = generator.generate(
        prompts, imgs=imgs, max_gen_len=max_gen_len, temperature=temperature, top_p=top_p
    )
    result = results[0].strip()
    print(result)
    return result


def download_llama_adapter(instruct_adapter_path, caption_adapter_path):
    if not os.path.exists(instruct_adapter_path):
        os.system(
            f"wget -q -O {instruct_adapter_path} https://github.com/ZrrSkywalker/LLaMA-Adapter/releases/download/v.1.0.0/llama_adapter_len10_layer30_release.pth")

    if not os.path.exists(caption_adapter_path):
        os.system(
            f"wget -q -O {caption_adapter_path} https://github.com/ZrrSkywalker/LLaMA-Adapter/releases/download/v.1.0.0/llama_adapter_len10_layer30_caption_vit_l.pth")


# ckpt_path = "/data1/llma/7B/consolidated.00.pth"
# param_path = "/data1/llma/7B/params.json"
# tokenizer_path = "/data1/llma/tokenizer.model"
ckpt0_path = hf_hub_download(
    repo_id="csuhan/llama_storage", filename="consolidated.00_part0.pth")
ckpt1_path = hf_hub_download(
    repo_id="csuhan/llama_storage", filename="consolidated.00_part1.pth")
param_path = hf_hub_download(
    repo_id="nyanko7/LLaMA-7B", filename="params.json")
tokenizer_path = hf_hub_download(
    repo_id="nyanko7/LLaMA-7B", filename="tokenizer.model")
instruct_adapter_path = "llama_adapter_len10_layer30_release.pth"
caption_adapter_path = "llama_adapter_len10_layer30_caption_vit_l.pth"
max_seq_len = 512
max_batch_size = 1

# download models
# download_llama_adapter(instruct_adapter_path, caption_adapter_path)

local_rank, world_size = setup_model_parallel()
if local_rank > 0:
    sys.stdout = open(os.devnull, "w")

generator = load(
    ckpt0_path, ckpt1_path, param_path, tokenizer_path, instruct_adapter_path, caption_adapter_path, local_rank, world_size, max_seq_len, max_batch_size
)


def create_instruct_demo():
    with gr.Blocks() as instruct_demo:
        with gr.Row():
            with gr.Column():
                instruction = gr.Textbox(lines=2, label="Instruction")
                input = gr.Textbox(
                    lines=2, label="Context input", placeholder='none')
                max_len = gr.Slider(minimum=1, maximum=512,
                                    value=128, label="Max length")
                with gr.Accordion(label='Advanced options', open=False):
                    temp = gr.Slider(minimum=0, maximum=1,
                                     value=0.1, label="Temperature")
                    top_p = gr.Slider(minimum=0, maximum=1,
                                      value=0.75, label="Top p")

                run_botton = gr.Button("Run")

            with gr.Column():
                outputs = gr.Textbox(lines=10, label="Output")

        inputs = [instruction, input, max_len, temp, top_p]

        examples = [
            "Tell me about alpacas.",
            "Write a Python program that prints the first 10 Fibonacci numbers.",
            "Write a conversation between the sun and pluto.",
            "Write a theory to explain why cat never existed",
        ]
        examples = [
            [x, "none", 128, 0.1, 0.75]
            for x in examples]

        gr.Examples(
            examples=examples,
            inputs=inputs,
            outputs=outputs,
            fn=instruct_generate,
            cache_examples=os.getenv('SYSTEM') == 'spaces'
        )
        run_botton.click(fn=instruct_generate, inputs=inputs, outputs=outputs)
    return instruct_demo


def create_caption_demo():
    with gr.Blocks() as instruct_demo:
        with gr.Row():
            with gr.Column():
                img = gr.Image(label='Input', type='filepath')
                max_len = gr.Slider(minimum=1, maximum=512,
                                    value=64, label="Max length")
                with gr.Accordion(label='Advanced options', open=False):
                    temp = gr.Slider(minimum=0, maximum=1,
                                     value=0.1, label="Temperature")
                    top_p = gr.Slider(minimum=0, maximum=1,
                                      value=0.75, label="Top p")

                run_botton = gr.Button("Run")

            with gr.Column():
                outputs = gr.Textbox(lines=10, label="Output")

        inputs = [img, max_len, temp, top_p]

        examples = glob.glob("caption_demo/*.jpg")
        examples = [
            [x, 64, 0.1, 0.75]
            for x in examples]

        gr.Examples(
            examples=examples,
            inputs=inputs,
            outputs=outputs,
            fn=caption_generate,
            cache_examples=os.getenv('SYSTEM') == 'spaces'
        )
        run_botton.click(fn=caption_generate, inputs=inputs, outputs=outputs)
    return instruct_demo


description = """
# LLaMA-AdapterπŸš€
The official demo for **LLaMA-Adapter: Efficient Fine-tuning of Language Models with Zero-init Attention**.
Please refer to our [arXiv paper](https://arxiv.org/abs/2303.16199) and [github](https://github.com/ZrrSkywalker/LLaMA-Adapter) for more details.
"""

with gr.Blocks(css='style.css') as demo:
    gr.Markdown(description)
    with gr.TabItem("Instruction-Following"):
        create_instruct_demo()
    with gr.TabItem("Image Captioning"):
        create_caption_demo()

demo.queue(api_open=True, concurrency_count=1).launch()