#-*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from text_encoder import SubwordTextEncoder import tokenizer import os import tempfile import tensorflow as tf tf.flags.DEFINE_string('output_filename', '/tmp/my.subword_text_encoder', 'where to store the SubwordTextEncoder') tf.flags.DEFINE_string('corpus_filepattern', '', 'Corpus of one or more text files') tf.flags.DEFINE_string('vocab_filepattern', '', 'One or more vocabulary files ' '(one word per line as "word,count")') tf.flags.DEFINE_integer('min_count', 5, 'Minimum subtoken count in corpus') tf.flags.DEFINE_integer('vocab_size', 30000, 'The final vocab size. It will produce a vocab with a near vocab size') tf.flags.DEFINE_integer('corpus_max_lines', None, 'How many lines of corpus to read') tf.flags.DEFINE_integer('num_iterations', 5, 'Number of iterations') tf.flags.DEFINE_bool('split_on_newlines', True, 'Break corpus into lines.') tf.flags.DEFINE_string('additional_chars', "", 'Set special characters to be included in vocab. ex : "~", "/".') tf.flags.DEFINE_integer('max_subtoken_length', None, 'Max subtoken length') tf.flags.DEFINE_string('raw_vocab', None, 'Raw bert vovab file') tf.flags.DEFINE_bool('do_lower_case', False, 'Whether or not to lowercase the input corpus') FLAGS = tf.flags.FLAGS def merge_output_file_with_bert_vocab(output_filename, bert_vocab, temp_path): writer = open(output_filename, 'w', encoding='utf-8') _set = set() with open(bert_vocab, 'r', encoding='utf-8') as reader: for line in reader: writer.write(line) _set.add(line.strip()) print(temp_path) with open(temp_path, 'r', encoding='utf-8') as reader: for line in reader: if line.strip() not in _set: writer.write(line) writer.close() # os.remove(temp_path) def main(unused_argv): if FLAGS.corpus_filepattern and FLAGS.vocab_filepattern: raise ValueError( 'Must only provide one of --corpus_filepattern or --vocab_filepattern') elif FLAGS.corpus_filepattern: token_counts = tokenizer.corpus_token_counts( FLAGS.corpus_filepattern, FLAGS.corpus_max_lines, split_on_newlines=FLAGS.split_on_newlines, additional_chars=FLAGS.additional_chars, do_lower_case=FLAGS.do_lower_case) elif FLAGS.vocab_filepattern: token_counts = tokenizer.vocab_token_counts(FLAGS.vocab_filepattern, FLAGS.corpus_max_lines, FLAGS.do_lower_case) else: raise ValueError( 'Must provide one of --corpus_filepattern or --vocab_filepattern') reserved_tokens = None if FLAGS.raw_vocab: lines = open(FLAGS.raw_vocab, 'r', encoding='utf-8').readlines() lines = [s.strip() for s in lines if len(s) > 0] reserved_tokens = lines print(len(token_counts)) print(len(reserved_tokens)) target_size = FLAGS.vocab_size if target_size <= len(reserved_tokens): raise ValueError("The vocab_size must be larger than the origin vocab's size ") if target_size >= len(token_counts): raise ValueError("The vocab_size is too large. Please set it smaller or prepare more corpus.") min_val = 1 max_val = len(token_counts) // (target_size ** 0.5) fd, temp_path = tempfile.mkstemp() encoder = SubwordTextEncoder.build_to_target_size(target_size,token_counts,min_val, max_val, num_iterations=FLAGS.num_iterations, reserved_tokens=reserved_tokens, max_subtoken_length=FLAGS.max_subtoken_length) # encoder = SubwordTextEncoder() # encoder.build_from_token_counts(token_counts, FLAGS.min_count, # FLAGS.num_iterations, reserved_tokens=reserved_tokens, max_subtoken_length=FLAGS.max_subtoken_length) encoder.store_to_file(temp_path, add_single_quotes=False) merge_output_file_with_bert_vocab(FLAGS.output_filename, FLAGS.raw_vocab, temp_path) if __name__ == '__main__': tf.app.run()