import os os.system('git clone https://github.com/facebookresearch/detectron2.git') os.system('pip install -e detectron2') import sys sys.path.append("detectron2") from unilm.dit.object_detection.ditod import add_vit_config import torch import cv2 from detectron2.config import CfgNode as CN from detectron2.config import get_cfg from detectron2.utils.visualizer import ColorMode, Visualizer from detectron2.data import MetadataCatalog from detectron2.engine import DefaultPredictor import gradio as gr cfg = get_cfg() add_vit_config(cfg) cfg.merge_from_file("cascade_dit_base.yml") cfg.MODEL.WEIGHTS = "publaynet_dit-b_cascade.pth" cfg.MODEL.DEVICE = "cuda" if torch.cuda.is_available() else "cpu" predictor = DefaultPredictor(cfg) def analyze_image(img): md = MetadataCatalog.get(cfg.DATASETS.TEST[0]) if cfg.DATASETS.TEST[0] == 'icdar2019_test': md.set(thing_classes=["table"]) else: md.set(thing_classes=["text", "title", "list", "table", "figure"]) output = predictor(img)["instances"] # Filter instances to keep only those corresponding to tables table_instances = output[output.pred_classes == md.thing_classes.index("table")] v = Visualizer(img[:, :, ::-1], md, scale=1.0, instance_mode=ColorMode.SEGMENTATION) # Draw instance predictions for tables only result = v.draw_instance_predictions(table_instances.to("cpu")) result_image = result.get_image()[:, :, ::-1] # Get bounding box details bbox_details = [] for i in range(len(table_instances)): instance = table_instances[i] bbox = instance.pred_boxes.tensor.cpu().numpy().tolist() score = instance.scores.cpu().numpy().item() bbox_details.append({"bbox": bbox, "score": score}) return result_image, bbox_details title = " Table Detection with DiT" css = ".output-image, .input-image, .image-preview {height: 600px !important}" iface = gr.Interface( fn=analyze_image, inputs=[gr.Image(type="numpy", label="document image")], outputs=[gr.Image(type="numpy", label="detected tables"), gr.JSON(label="bounding box details")], title=title, css=css, ) iface.launch(debug=True, share=True)