hassoudi commited on
Commit
51ae1fa
·
verified ·
1 Parent(s): 2623b00

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +68 -0
app.py ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import pipeline
3
+ from huggingface_hub import login
4
+ import os
5
+
6
+ # Initialize global pipeline
7
+ ner_pipeline = None
8
+
9
+ def load_healthcare_ner_pipeline():
10
+ """Load the Hugging Face pipeline for Healthcare NER."""
11
+ global ner_pipeline
12
+ if ner_pipeline is None:
13
+
14
+ ner_pipeline = pipeline(
15
+ "token-classification",
16
+ model="TypicaAI/magbert-ner",
17
+ aggregation_strategy="first" # Groups B- and I- tokens into entities
18
+ )
19
+ return ner_pipeline
20
+
21
+
22
+ def process_text(text):
23
+ """Process input text and return highlighted entities."""
24
+ pipeline = load_healthcare_ner_pipeline()
25
+ entities = pipeline(text)
26
+ return {"text": text, "entities": entities}
27
+
28
+
29
+ def log_demo_usage(text, num_entities):
30
+ """Log demo usage for analytics."""
31
+ print(f"Processed text: {text[:50]}... | Entities found: {num_entities}")
32
+
33
+ # Define the main demo interface
34
+ demo = gr.Interface(
35
+ fn=process_text,
36
+ inputs=gr.Textbox(
37
+ label="Paste French text",
38
+ placeholder="La Coupe du monde de football 2030 se déroulera au Maroc, en Espagne et au Portugal.",
39
+ lines=5
40
+ ),
41
+ outputs=gr.HighlightedText(label="Identified Entities"),
42
+ title="🌟 MagBERT-NER: High-Performing French NER",
43
+ description="""
44
+ _By **[Hicham Assoudi](https://huggingface.co/hassoudi)** – AI Researcher (Ph.D.), Oracle Consultant, and Author._ 🔗 [Follow me on LinkedIn](https://www.linkedin.com/in/assoudi)
45
+
46
+ MagBERT-NER is a robust **Named Entity Recognition (NER)** model for the **French language**, trained on a **manually curated dataset** from diverse Moroccan sources. It’s designed to handle **names, places, currencies**, and other entities with exceptional precision, especially in **Moroccan contexts**.
47
+ ## 🚀 Highlights:
48
+ - **20,000+ Downloads**: Trusted by developers and researchers for French NER tasks.
49
+ - **🌐 Recognized by John Snow Labs**: Adapted for scalability and enterprise-grade applications like **healthcare**.
50
+ """,
51
+ article="""
52
+ ## ⚠️ Disclaimer
53
+ This is a **free demo model** provided without support. While it showcases high precision and is ideal for educational and exploratory purposes, it is not intended for production or commercial use.
54
+
55
+ For production-grade or commercial models, please contact us at **[email protected]**.
56
+ """,
57
+ examples=[
58
+ ["Fatima Zahra a acheté une babouche artisanale au souk de Fès pour 250 dirhams."],
59
+ ["Youssef a participé à une réunion importante à Tétouan pendant Ramadan."],
60
+ ["Amina a vendu des tapis au marché local pour 1 200 dirhams."],
61
+ ["Le projet Al Massira, situé près d'Oujda, sera lancé en septembre."],
62
+ ["Khadija a reçu un prix pour ses recherches sur l'arganier lors d'une cérémonie à Agadir."],
63
+ ["L'association Amal prévoit une collecte de fonds à Tanger pour soutenir les artisans locaux."], ]
64
+ )
65
+
66
+ # Launch the Gradio demo
67
+ if __name__ == "__main__":
68
+ demo.launch()