Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -6,17 +6,32 @@ import gradio as gr
|
|
6 |
import numpy as np
|
7 |
import torch
|
8 |
from PIL import Image
|
9 |
-
from diffusers import StableDiffusionXLPipeline, EDMEulerScheduler, StableDiffusionXLInstructPix2PixPipeline, AutoencoderKL
|
10 |
from custom_pipeline import CosStableDiffusionXLInstructPix2PixPipeline
|
11 |
from huggingface_hub import hf_hub_download
|
12 |
from huggingface_hub import InferenceClient
|
13 |
-
from diffusers import StableDiffusion3Pipeline, SD3Transformer2DModel, FlowMatchEulerDiscreteScheduler
|
14 |
|
15 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
16 |
dtype = torch.float16
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
repo =
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
help_text = """
|
22 |
To optimize image results:
|
@@ -44,7 +59,6 @@ def set_timesteps_patched(self, num_inference_steps: int, device = None):
|
|
44 |
# Image Editor
|
45 |
edit_file = hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl_edit.safetensors")
|
46 |
EDMEulerScheduler.set_timesteps = set_timesteps_patched
|
47 |
-
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
48 |
pipe_edit = StableDiffusionXLInstructPix2PixPipeline.from_single_file(
|
49 |
edit_file, num_in_channels=8, is_cosxl_edit=True, vae=vae, torch_dtype=torch.float16,
|
50 |
)
|
@@ -52,7 +66,7 @@ pipe_edit.scheduler = EDMEulerScheduler(sigma_min=0.002, sigma_max=120.0, sigma_
|
|
52 |
pipe_edit.to("cuda")
|
53 |
|
54 |
# Generator
|
55 |
-
@spaces.GPU(duration=
|
56 |
def king(type ,
|
57 |
input_image ,
|
58 |
instruction: str ,
|
@@ -63,7 +77,7 @@ def king(type ,
|
|
63 |
image_cfg_scale: float = 1.7,
|
64 |
width: int = 1024,
|
65 |
height: int = 1024,
|
66 |
-
|
67 |
use_resolution_binning: bool = True,
|
68 |
progress=gr.Progress(track_tqdm=True),
|
69 |
):
|
@@ -85,14 +99,14 @@ def king(type ,
|
|
85 |
if randomize_seed:
|
86 |
seed = random.randint(0, 99999)
|
87 |
generator = torch.Generator().manual_seed(seed)
|
88 |
-
|
89 |
-
|
90 |
-
guidance_scale =
|
91 |
-
|
92 |
-
|
93 |
-
height = height,
|
94 |
-
|
95 |
-
|
96 |
return seed, image
|
97 |
|
98 |
client = InferenceClient()
|
@@ -162,10 +176,15 @@ with gr.Blocks(css=css) as demo:
|
|
162 |
type = gr.Dropdown(["Image Generation","Image Editing"], label="Task", value="Image Generation",interactive=True, info="AI will select option based on your query, but if it selects wrong, please choose correct one.")
|
163 |
with gr.Column(scale=1):
|
164 |
generate_button = gr.Button("Generate")
|
165 |
-
|
|
|
166 |
with gr.Row():
|
167 |
input_image = gr.Image(label="Image", type="pil", interactive=True)
|
168 |
|
|
|
|
|
|
|
|
|
169 |
with gr.Row():
|
170 |
text_cfg_scale = gr.Number(value=7.3, step=0.1, label="Text CFG", interactive=True)
|
171 |
image_cfg_scale = gr.Number(value=1.7, step=0.1,label="Image CFG", interactive=True)
|
@@ -188,9 +207,7 @@ with gr.Blocks(css=css) as demo:
|
|
188 |
)
|
189 |
|
190 |
gr.Markdown(help_text)
|
191 |
-
|
192 |
instruction.change(fn=response, inputs=[instruction,input_image], outputs=type, queue=False)
|
193 |
-
|
194 |
input_image.upload(fn=response, inputs=[instruction,input_image], outputs=type, queue=False)
|
195 |
|
196 |
gr.on(triggers=[
|
@@ -206,6 +223,9 @@ with gr.Blocks(css=css) as demo:
|
|
206 |
seed,
|
207 |
text_cfg_scale,
|
208 |
image_cfg_scale,
|
|
|
|
|
|
|
209 |
],
|
210 |
outputs=[seed, input_image],
|
211 |
)
|
|
|
6 |
import numpy as np
|
7 |
import torch
|
8 |
from PIL import Image
|
9 |
+
from diffusers import StableDiffusionXLPipeline, EDMEulerScheduler, StableDiffusionXLInstructPix2PixPipeline, AutoencoderKL, EulerAncestralDiscreteScheduler
|
10 |
from custom_pipeline import CosStableDiffusionXLInstructPix2PixPipeline
|
11 |
from huggingface_hub import hf_hub_download
|
12 |
from huggingface_hub import InferenceClient
|
|
|
13 |
|
14 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
dtype = torch.float16
|
16 |
+
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
17 |
+
|
18 |
+
repo = "fluently/Fluently-XL-Final"
|
19 |
+
|
20 |
+
pipe_best = StableDiffusionXLPipeline.from_pretrained(repo, torch_dtype=torch.float16, vae=vae)
|
21 |
+
pipe_best.load_lora_weights("ehristoforu/dalle-3-xl-v2", weight_name="dalle-3-xl-lora-v2.safetensors", adapter_name="dalle")
|
22 |
+
pipe_best.load_lora_weights("KingNish/Better-Image-XL-Lora", weight_name="example-03.safetensors", adapter_name="lora")
|
23 |
+
pipe_best.set_adapters(["lora","dalle"], adapter_weights=[1.5, 0.5])
|
24 |
+
pipe_best.to("cuda")
|
25 |
|
26 |
+
pipe_3D = StableDiffusionXLPipeline.from_pretrained(repo, torch_dtype=torch.float16, vae=vae)
|
27 |
+
pipe_3D.load_lora_weights("artificialguybr/3DRedmond-V1", weight_name="3DRedmond-3DRenderStyle-3DRenderAF.safetensors", adapter_name="3D")
|
28 |
+
pipe_3D.set_adapters(["3D"])
|
29 |
+
pipe_3D.to("cuda")
|
30 |
+
|
31 |
+
pipe_logo = StableDiffusionXLPipeline.from_pretrained(repo, torch_dtype=torch.float16, vae=vae)
|
32 |
+
pipe_logo.load_lora_weights("artificialguybr/LogoRedmond-LogoLoraForSDXL", weight_name="LogoRedmond_LogoRedAF.safetensors", adapter_name="logo")
|
33 |
+
pipe_logo.set_adapters(["logo"])
|
34 |
+
pipe_logo.to("cuda")
|
35 |
|
36 |
help_text = """
|
37 |
To optimize image results:
|
|
|
59 |
# Image Editor
|
60 |
edit_file = hf_hub_download(repo_id="stabilityai/cosxl", filename="cosxl_edit.safetensors")
|
61 |
EDMEulerScheduler.set_timesteps = set_timesteps_patched
|
|
|
62 |
pipe_edit = StableDiffusionXLInstructPix2PixPipeline.from_single_file(
|
63 |
edit_file, num_in_channels=8, is_cosxl_edit=True, vae=vae, torch_dtype=torch.float16,
|
64 |
)
|
|
|
66 |
pipe_edit.to("cuda")
|
67 |
|
68 |
# Generator
|
69 |
+
@spaces.GPU(duration=45, queue=False)
|
70 |
def king(type ,
|
71 |
input_image ,
|
72 |
instruction: str ,
|
|
|
77 |
image_cfg_scale: float = 1.7,
|
78 |
width: int = 1024,
|
79 |
height: int = 1024,
|
80 |
+
style="BEST",
|
81 |
use_resolution_binning: bool = True,
|
82 |
progress=gr.Progress(track_tqdm=True),
|
83 |
):
|
|
|
99 |
if randomize_seed:
|
100 |
seed = random.randint(0, 99999)
|
101 |
generator = torch.Generator().manual_seed(seed)
|
102 |
+
if style=="3D":
|
103 |
+
instruction = f"3DRenderAF, 3D Render, {instruction}"
|
104 |
+
image = pipe_3D( prompt = instruction, guidance_scale = 5, num_inference_steps = steps, width = width, height = height, generator = generator).images[0]
|
105 |
+
elif style=="Logo":
|
106 |
+
instruction = f"LogoRedAF, {instruction}"
|
107 |
+
image = pipe_logo( prompt = instruction, guidance_scale = 5, num_inference_steps = steps, width = width, height = height, generator = generator).images[0]
|
108 |
+
else:
|
109 |
+
image = pipe_best( prompt = instruction, guidance_scale = 5, num_inference_steps = steps, width = width, height = height, generator = generator).images[0]
|
110 |
return seed, image
|
111 |
|
112 |
client = InferenceClient()
|
|
|
176 |
type = gr.Dropdown(["Image Generation","Image Editing"], label="Task", value="Image Generation",interactive=True, info="AI will select option based on your query, but if it selects wrong, please choose correct one.")
|
177 |
with gr.Column(scale=1):
|
178 |
generate_button = gr.Button("Generate")
|
179 |
+
with gr.Row():
|
180 |
+
style = gr.Radio(choices=["BEST","3D","Logo"],label="Style", value="BEST", interactive=True)
|
181 |
with gr.Row():
|
182 |
input_image = gr.Image(label="Image", type="pil", interactive=True)
|
183 |
|
184 |
+
with gr.Row():
|
185 |
+
width = gr.Number(value=1024, step=16,label="Width", interactive=True)
|
186 |
+
height = gr.Number(value=1024, step=16,label="Height", interactive=True)
|
187 |
+
|
188 |
with gr.Row():
|
189 |
text_cfg_scale = gr.Number(value=7.3, step=0.1, label="Text CFG", interactive=True)
|
190 |
image_cfg_scale = gr.Number(value=1.7, step=0.1,label="Image CFG", interactive=True)
|
|
|
207 |
)
|
208 |
|
209 |
gr.Markdown(help_text)
|
|
|
210 |
instruction.change(fn=response, inputs=[instruction,input_image], outputs=type, queue=False)
|
|
|
211 |
input_image.upload(fn=response, inputs=[instruction,input_image], outputs=type, queue=False)
|
212 |
|
213 |
gr.on(triggers=[
|
|
|
223 |
seed,
|
224 |
text_cfg_scale,
|
225 |
image_cfg_scale,
|
226 |
+
width,
|
227 |
+
height,
|
228 |
+
style
|
229 |
],
|
230 |
outputs=[seed, input_image],
|
231 |
)
|