TuringsSolutions
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import gradio as gr
|
3 |
+
import numpy as np
|
4 |
+
import tensorflow as tf
|
5 |
+
from keras.applications.mobilenet_v2 import MobileNetV2, preprocess_input
|
6 |
+
from keras.models import Model
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import logging
|
9 |
+
from skimage.transform import resize
|
10 |
+
from PIL import Image, ImageEnhance, ImageFilter
|
11 |
+
from tqdm import tqdm
|
12 |
+
|
13 |
+
# Disable GPU usage by default
|
14 |
+
os.environ['CUDA_VISIBLE_DEVICES'] = ''
|
15 |
+
|
16 |
+
class SwarmAgent:
|
17 |
+
def __init__(self, position, velocity):
|
18 |
+
self.position = position
|
19 |
+
self.velocity = velocity
|
20 |
+
self.m = np.zeros_like(position)
|
21 |
+
self.v = np.zeros_like(position)
|
22 |
+
|
23 |
+
class SwarmNeuralNetwork:
|
24 |
+
def __init__(self, num_agents, image_shape, target_image):
|
25 |
+
self.image_shape = image_shape
|
26 |
+
self.resized_shape = (256, 256, 3) # High resolution
|
27 |
+
self.agents = [SwarmAgent(self.random_position(), self.random_velocity()) for _ in range(num_agents)]
|
28 |
+
self.target_image = self.load_target_image(target_image)
|
29 |
+
self.generated_image = np.random.randn(*image_shape) # Start with noise
|
30 |
+
self.mobilenet = self.load_mobilenet_model()
|
31 |
+
self.current_epoch = 0
|
32 |
+
self.noise_schedule = np.linspace(0.1, 0.002, 1000) # Noise schedule
|
33 |
+
|
34 |
+
def random_position(self):
|
35 |
+
return np.random.randn(*self.image_shape) # Use Gaussian noise
|
36 |
+
|
37 |
+
def random_velocity(self):
|
38 |
+
return np.random.randn(*self.image_shape) * 0.01
|
39 |
+
|
40 |
+
def load_target_image(self, img_path):
|
41 |
+
img = Image.open(img_path)
|
42 |
+
img = img.resize((self.image_shape[1], self.image_shape[0]))
|
43 |
+
img_array = np.array(img) / 127.5 - 1 # Normalize to [-1, 1]
|
44 |
+
plt.imshow((img_array + 1) / 2) # Convert back to [0, 1] for display
|
45 |
+
plt.title('Target Image')
|
46 |
+
plt.show()
|
47 |
+
return img_array
|
48 |
+
|
49 |
+
def resize_image(self, image):
|
50 |
+
return resize(image, self.resized_shape, anti_aliasing=True)
|
51 |
+
|
52 |
+
def load_mobilenet_model(self):
|
53 |
+
mobilenet = MobileNetV2(weights='imagenet', include_top=False, input_shape=self.resized_shape)
|
54 |
+
return Model(inputs=mobilenet.input, outputs=mobilenet.get_layer('block_13_expand_relu').output)
|
55 |
+
|
56 |
+
def add_positional_encoding(self, image):
|
57 |
+
h, w, c = image.shape
|
58 |
+
pos_enc = np.zeros_like(image)
|
59 |
+
for i in range(h):
|
60 |
+
for j in range(w):
|
61 |
+
pos_enc[i, j, :] = [i/h, j/w, 0]
|
62 |
+
return image + pos_enc
|
63 |
+
|
64 |
+
def multi_head_attention(self, agent, num_heads=4):
|
65 |
+
attention_scores = []
|
66 |
+
for _ in range(num_heads):
|
67 |
+
similarity = np.exp(-np.sum((agent.position - self.target_image)**2, axis=-1))
|
68 |
+
attention_score = similarity / np.sum(similarity)
|
69 |
+
attention_scores.append(attention_score)
|
70 |
+
attention = np.mean(attention_scores, axis=0)
|
71 |
+
return np.expand_dims(attention, axis=-1)
|
72 |
+
|
73 |
+
def multi_scale_perceptual_loss(self, agent_positions):
|
74 |
+
target_image_resized = self.resize_image((self.target_image + 1) / 2) # Convert to [0, 1] for MobileNet
|
75 |
+
target_image_preprocessed = preprocess_input(target_image_resized[np.newaxis, ...] * 255) # MobileNet expects [0, 255]
|
76 |
+
target_features = self.mobilenet.predict(target_image_preprocessed)
|
77 |
+
|
78 |
+
losses = []
|
79 |
+
for agent_position in agent_positions:
|
80 |
+
agent_image_resized = self.resize_image((agent_position + 1) / 2)
|
81 |
+
agent_image_preprocessed = preprocess_input(agent_image_resized[np.newaxis, ...] * 255)
|
82 |
+
agent_features = self.mobilenet.predict(agent_image_preprocessed)
|
83 |
+
|
84 |
+
loss = np.mean((target_features - agent_features)**2)
|
85 |
+
losses.append(1 / (1 + loss))
|
86 |
+
|
87 |
+
return np.array(losses)
|
88 |
+
|
89 |
+
def update_agents(self, timestep):
|
90 |
+
noise_level = self.noise_schedule[min(timestep, len(self.noise_schedule) - 1)]
|
91 |
+
|
92 |
+
for agent in self.agents:
|
93 |
+
# Predict noise
|
94 |
+
predicted_noise = agent.position - self.target_image
|
95 |
+
|
96 |
+
# Denoise
|
97 |
+
denoised = (agent.position - noise_level * predicted_noise) / (1 - noise_level)
|
98 |
+
|
99 |
+
# Add scaled noise for next step
|
100 |
+
agent.position = denoised + np.random.randn(*self.image_shape) * np.sqrt(noise_level)
|
101 |
+
|
102 |
+
# Clip values
|
103 |
+
agent.position = np.clip(agent.position, -1, 1)
|
104 |
+
|
105 |
+
def generate_image(self):
|
106 |
+
self.generated_image = np.mean([agent.position for agent in self.agents], axis=0)
|
107 |
+
# Normalize to [0, 1] range for display
|
108 |
+
self.generated_image = (self.generated_image + 1) / 2
|
109 |
+
self.generated_image = np.clip(self.generated_image, 0, 1)
|
110 |
+
|
111 |
+
# Apply sharpening filter
|
112 |
+
image_pil = Image.fromarray((self.generated_image * 255).astype(np.uint8))
|
113 |
+
image_pil = image_pil.filter(ImageFilter.SHARPEN)
|
114 |
+
self.generated_image = np.array(image_pil) / 255.0
|
115 |
+
|
116 |
+
def train(self, epochs):
|
117 |
+
logging.basicConfig(filename='training.log', level=logging.INFO)
|
118 |
+
|
119 |
+
for epoch in tqdm(range(epochs), desc="Training Epochs"):
|
120 |
+
self.update_agents(epoch)
|
121 |
+
self.generate_image()
|
122 |
+
|
123 |
+
mse = np.mean(((self.generated_image * 2 - 1) - self.target_image)**2)
|
124 |
+
logging.info(f"Epoch {epoch}, MSE: {mse}")
|
125 |
+
|
126 |
+
if epoch % 5 == 0:
|
127 |
+
print(f"Epoch {epoch}, MSE: {mse}")
|
128 |
+
self.display_image(self.generated_image, title=f'Epoch {epoch}')
|
129 |
+
self.current_epoch += 1
|
130 |
+
|
131 |
+
def display_image(self, image, title=''):
|
132 |
+
plt.imshow(image)
|
133 |
+
plt.title(title)
|
134 |
+
plt.axis('off')
|
135 |
+
plt.show()
|
136 |
+
|
137 |
+
def display_agent_positions(self, epoch):
|
138 |
+
fig, ax = plt.subplots()
|
139 |
+
positions = np.array([agent.position for agent in self.agents])
|
140 |
+
ax.imshow(self.generated_image, extent=[0, self.image_shape[1], 0, self.image_shape[0]])
|
141 |
+
ax.scatter(positions[:, :, 0].flatten(), positions[:, :, 1].flatten(), s=1, c='red')
|
142 |
+
plt.title(f'Agent Positions at Epoch {epoch}')
|
143 |
+
plt.show()
|
144 |
+
|
145 |
+
def save_model(self, filename):
|
146 |
+
model_state = {
|
147 |
+
'agents': self.agents,
|
148 |
+
'generated_image': self.generated_image,
|
149 |
+
'current_epoch': self.current_epoch
|
150 |
+
}
|
151 |
+
np.save(filename, model_state)
|
152 |
+
|
153 |
+
def load_model(self, filename):
|
154 |
+
model_state = np.load(filename, allow_pickle=True).item()
|
155 |
+
self.agents = model_state['agents']
|
156 |
+
self.generated_image = model_state['generated_image']
|
157 |
+
self.current_epoch = model_state['current_epoch']
|
158 |
+
|
159 |
+
def generate_new_image(self, num_steps=500): # Optimized number of steps
|
160 |
+
for agent in self.agents:
|
161 |
+
agent.position = np.random.randn(*self.image_shape)
|
162 |
+
|
163 |
+
for step in tqdm(range(num_steps), desc="Generating Image"):
|
164 |
+
self.update_agents(num_steps - step - 1) # Reverse order
|
165 |
+
|
166 |
+
self.generate_image()
|
167 |
+
return self.generated_image
|
168 |
+
|
169 |
+
# Gradio Interface
|
170 |
+
def train_snn(image_path, num_agents, epochs, arm_position, leg_position, brightness, contrast, color):
|
171 |
+
snn = SwarmNeuralNetwork(num_agents=num_agents, image_shape=(256, 256, 3), target_image=image_path) # High resolution
|
172 |
+
|
173 |
+
# Apply user-specified adjustments to the target image
|
174 |
+
image = Image.open(image_path)
|
175 |
+
image = ImageEnhance.Brightness(image).enhance(brightness)
|
176 |
+
image = ImageEnhance.Contrast(image).enhance(contrast)
|
177 |
+
image = ImageEnhance.Color(image).enhance(color)
|
178 |
+
|
179 |
+
# Mock adjustment for arm and leg positions (to be implemented with actual logic)
|
180 |
+
# For now, we just log the values
|
181 |
+
print(f"Adjusting arm position: {arm_position}, leg position: {leg_position}")
|
182 |
+
|
183 |
+
snn.target_image = snn.load_target_image(image)
|
184 |
+
snn.train(epochs=epochs)
|
185 |
+
snn.save_model('snn_model.npy')
|
186 |
+
generated_image = snn.generated_image
|
187 |
+
return generated_image
|
188 |
+
|
189 |
+
def generate_new_image():
|
190 |
+
snn = SwarmNeuralNetwork(num_agents=2000, image_shape=(256, 256, 3), target_image=None) # High resolution and optimized number of agents
|
191 |
+
snn.load_model('snn_model.npy')
|
192 |
+
new_image = snn.generate_new_image()
|
193 |
+
return new_image
|
194 |
+
|
195 |
+
interface = gr.Interface(
|
196 |
+
fn=train_snn,
|
197 |
+
inputs=[
|
198 |
+
gr.Image(type="filepath", label
|