TuringsSolutions commited on
Commit
c35fc1c
·
verified ·
1 Parent(s): 4243d81

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -6
app.py CHANGED
@@ -6,7 +6,7 @@ from keras.models import Model
6
  import matplotlib.pyplot as plt
7
  import logging
8
  from skimage.transform import resize
9
- from PIL import Image, ImageEnhance
10
  from tqdm import tqdm
11
 
12
  class SwarmAgent:
@@ -19,7 +19,7 @@ class SwarmAgent:
19
  class SwarmNeuralNetwork:
20
  def __init__(self, num_agents, image_shape, target_image):
21
  self.image_shape = image_shape
22
- self.resized_shape = (64, 64, 3)
23
  self.agents = [SwarmAgent(self.random_position(), self.random_velocity()) for _ in range(num_agents)]
24
  self.target_image = self.load_target_image(target_image)
25
  self.generated_image = np.random.randn(*image_shape) # Start with noise
@@ -105,8 +105,9 @@ class SwarmNeuralNetwork:
105
 
106
  # Apply sharpening filter
107
  image_pil = Image.fromarray((self.generated_image * 255).astype(np.uint8))
108
- enhancer = ImageEnhance.Sharpness(image_pil)
109
- self.generated_image = np.array(enhancer.enhance(2.0)) / 255.0
 
110
 
111
  def train(self, epochs):
112
  logging.basicConfig(filename='training.log', level=logging.INFO)
@@ -163,7 +164,7 @@ class SwarmNeuralNetwork:
163
 
164
  # Gradio Interface
165
  def train_snn(image, num_agents, epochs, brightness, contrast, color):
166
- snn = SwarmNeuralNetwork(num_agents=num_agents, image_shape=(64, 64, 3), target_image=image)
167
 
168
  # Apply user-specified adjustments to the target image
169
  image = ImageEnhance.Brightness(image).enhance(brightness)
@@ -176,7 +177,7 @@ def train_snn(image, num_agents, epochs, brightness, contrast, color):
176
  return snn.generated_image
177
 
178
  def generate_new_image():
179
- snn = SwarmNeuralNetwork(num_agents=2000, image_shape=(64, 64, 3), target_image=None)
180
  snn.load_model('snn_model.npy')
181
  new_image = snn.generate_new_image()
182
  return new_image
 
6
  import matplotlib.pyplot as plt
7
  import logging
8
  from skimage.transform import resize
9
+ from PIL import Image, ImageEnhance, ImageFilter
10
  from tqdm import tqdm
11
 
12
  class SwarmAgent:
 
19
  class SwarmNeuralNetwork:
20
  def __init__(self, num_agents, image_shape, target_image):
21
  self.image_shape = image_shape
22
+ self.resized_shape = (128, 128, 3) # Increased resolution
23
  self.agents = [SwarmAgent(self.random_position(), self.random_velocity()) for _ in range(num_agents)]
24
  self.target_image = self.load_target_image(target_image)
25
  self.generated_image = np.random.randn(*image_shape) # Start with noise
 
105
 
106
  # Apply sharpening filter
107
  image_pil = Image.fromarray((self.generated_image * 255).astype(np.uint8))
108
+ image_pil = image_pil.filter(ImageFilter.SHARPEN)
109
+ image_pil = image_pil.filter(ImageFilter.DETAIL)
110
+ self.generated_image = np.array(image_pil) / 255.0
111
 
112
  def train(self, epochs):
113
  logging.basicConfig(filename='training.log', level=logging.INFO)
 
164
 
165
  # Gradio Interface
166
  def train_snn(image, num_agents, epochs, brightness, contrast, color):
167
+ snn = SwarmNeuralNetwork(num_agents=num_agents, image_shape=(128, 128, 3), target_image=image)
168
 
169
  # Apply user-specified adjustments to the target image
170
  image = ImageEnhance.Brightness(image).enhance(brightness)
 
177
  return snn.generated_image
178
 
179
  def generate_new_image():
180
+ snn = SwarmNeuralNetwork(num_agents=2000, image_shape=(128, 128, 3), target_image=None)
181
  snn.load_model('snn_model.npy')
182
  new_image = snn.generate_new_image()
183
  return new_image