Spaces:
Runtime error
Runtime error
import os | |
from typing import List, Optional, Union | |
import gradio as gr | |
import spacy | |
from spacy.tokens import Doc, Span | |
from relik import Relik | |
from relik.inference.data.objects import TaskType, RelikOutput | |
from pyvis.network import Network | |
# RELIK Models Setup | |
def setup_relik_model(model_name: str, device: str): | |
return Relik.from_pretrained(model_name, device=device) | |
relik_models = { | |
"sapienzanlp/relik-entity-linking-large": setup_relik_model("sapienzanlp/relik-entity-linking-large", "cuda"), | |
"relik-ie/relik-relation-extraction-small": setup_relik_model("relik-ie/relik-relation-extraction-small", "cuda") | |
} | |
def get_span_annotations(response, doc): | |
spans = [] | |
for span in response.spans: | |
spans.append(Span(doc, span.start, span.end, span.label)) | |
colors = {span.label_: '#ff5733' for span in spans} # Simple fixed color for demonstration | |
return spans, colors | |
def generate_graph(spans, response, colors): | |
g = Network(width="720px", height="600px", directed=True) | |
for ent in spans: | |
g.add_node(ent.text, label=ent.text, color=colors[ent.label_], size=15) | |
seen_rels = set() | |
for rel in response.triplets: | |
if (rel.subject.text, rel.object.text, rel.label) in seen_rels: | |
continue | |
g.add_edge(rel.subject.text, rel.object.text, label=rel.label) | |
seen_rels.add((rel.subject.text, rel.object.text, rel.label)) | |
html = g.generate_html() | |
return f"""<iframe style="width: 100%; height: 600px;margin:0 auto" srcdoc='{html.replace("'", '"')}'></iframe>""" | |
def text_analysis(Text, Model, Relation_Threshold, Window_Size, Window_Stride): | |
if Model not in relik_models: | |
raise ValueError(f"Model {Model} not found.") | |
relik = relik_models[Model] | |
nlp = spacy.blank("xx") | |
annotated_text = relik(Text, annotation_type="word", relation_threshold=Relation_Threshold, window_size=Window_Size, window_stride=Window_Stride) | |
doc = Doc(nlp.vocab, words=[token.text for token in annotated_text.tokens]) | |
spans, colors = get_span_annotations(annotated_text, doc) | |
doc.spans["sc"] = spans | |
display_el = spacy.displacy.render(doc, style="span", options={"colors": colors}).replace("\n", " ") | |
display_el = display_el.replace("border-radius: 0.35em;", "border-radius: 0.35em; white-space: nowrap;").replace("span style", "span id='el' style") | |
display_re = generate_graph(spans, annotated_text, colors) if annotated_text.triplets else "" | |
return display_el, display_re | |
theme = gr.themes.Base(primary_hue="rose", secondary_hue="rose", text_size="lg") | |
css = """ | |
h1 { text-align: center; display: block; } | |
mark { color: black; } | |
#el { white-space: nowrap; } | |
""" | |
with gr.Blocks(fill_height=True, css=css, theme=theme) as demo: | |
gr.Markdown("# ReLiK with P-FAF Integration") | |
gr.Interface( | |
text_analysis, | |
[ | |
gr.Textbox(label="Input Text", placeholder="Enter sentence here..."), | |
gr.Dropdown(list(relik_models.keys()), value="sapienzanlp/relik-entity-linking-large", label="Relik Model"), | |
gr.Slider(minimum=0, maximum=1, step=0.05, value=0.5, label="Relation Threshold"), | |
gr.Slider(minimum=16, maximum=128, step=16, value=32, label="Window Size"), | |
gr.Slider(minimum=8, maximum=64, step=8, value=16, label="Window Stride") | |
], | |
[gr.HTML(label="Entities"), gr.HTML(label="Relations")], | |
examples=[ | |
["Michael Jordan was one of the best players in the NBA."], | |
["Noam Chomsky is a renowned linguist and cognitive scientist."] | |
], | |
allow_flagging="never" | |
) | |
if __name__ == "__main__": | |
demo.launch() |