TristanBehrens commited on
Commit
429f1a9
·
1 Parent(s): f7d2f16

Adds pharia model.

Browse files
Files changed (2) hide show
  1. app.py +5 -3
  2. source/models/pharia.py +696 -0
app.py CHANGED
@@ -18,7 +18,9 @@ midi_instruments = {
18
  # Load the model once and cache it.
19
  @st.cache_resource
20
  def load_model():
21
- model = LanguageModel("TristanBehrens/bach-garland-mambaplus")
 
 
22
  return model
23
  model = load_model()
24
 
@@ -50,8 +52,8 @@ def main():
50
 
51
  # Add a title.
52
  st.title("Garland Composer")
53
- linkedin_url = "https://huggingface.co/TristanBehrens/bach-garland-mambaplus/"
54
- x_url = "https://huggingface.co/TristanBehrens/bach-garland-mambaplus/"
55
  st.write(f"By Dr. Tristan Behrens. Find me on [LinkedIn]({linkedin_url}) and [X]({x_url}).")
56
  hf_url = "https://huggingface.co/TristanBehrens/bach-garland-mambaplus/"
57
  st.write(f"Model available on [Hugging Face]({hf_url}).")
 
18
  # Load the model once and cache it.
19
  @st.cache_resource
20
  def load_model():
21
+ #model_id = "TristanBehrens/bach-garland-mambaplus"
22
+ model_id = "TristanBehrens/bach-garland-pharia"
23
+ model = LanguageModel(model_id)
24
  return model
25
  model = load_model()
26
 
 
52
 
53
  # Add a title.
54
  st.title("Garland Composer")
55
+ linkedin_url = "https://www.linkedin.com/dr-tristan-behrens-734967a2/"
56
+ x_url = "https://x.com/DrTBehrens"
57
  st.write(f"By Dr. Tristan Behrens. Find me on [LinkedIn]({linkedin_url}) and [X]({x_url}).")
58
  hf_url = "https://huggingface.co/TristanBehrens/bach-garland-mambaplus/"
59
  st.write(f"Model available on [Hugging Face]({hf_url}).")
source/models/pharia.py ADDED
@@ -0,0 +1,696 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass, field
2
+ from typing import Optional, Any
3
+ import math
4
+ from typing import List, Optional, Tuple, Union
5
+ import torch
6
+ from torch import nn
7
+ from transformers.activations import ACT2FN
8
+ from transformers.cache_utils import Cache, DynamicCache, StaticCache
9
+ from transformers.modeling_attn_mask_utils import AttentionMaskConverter
10
+ from transformers.modeling_outputs import (
11
+ BaseModelOutputWithPast,
12
+ CausalLMOutputWithPast,
13
+ )
14
+ from transformers.modeling_utils import PreTrainedModel
15
+
16
+
17
+ @dataclass
18
+ class PhariaConfig:
19
+ pad_token_id: Optional[int] = None
20
+ bos_token_id: int = 1
21
+ eos_token_id: int = 2
22
+ hidden_act: str = "gelu"
23
+ hidden_size: int = 512
24
+ initializer_range: float = 0.02
25
+ intermediate_size: int = 2048
26
+ max_position_embeddings: int = 8192
27
+ num_attention_heads: int = 4
28
+ num_hidden_layers: int = 4
29
+ num_key_value_heads: int = 2
30
+ torch_dtype: str = "bfloat16"
31
+ transformers_version: str = "4.31.0.dev0"
32
+ use_cache: bool = True
33
+ vocab_size: int = -1
34
+ mlp_bias: bool = True
35
+ attention_bias: bool = True
36
+ tie_word_embeddings: bool = False
37
+ attention_dropout: float = 0.0
38
+ rope_theta: int = 1000000
39
+ rope_scaling: Optional[Any] = None
40
+
41
+
42
+
43
+ class PhariaRotaryEmbedding(nn.Module):
44
+ def __init__(
45
+ self,
46
+ dim,
47
+ max_position_embeddings=2048,
48
+ base=10000,
49
+ device=None,
50
+ scaling_factor=1.0,
51
+ ):
52
+ super().__init__()
53
+ self.scaling_factor = scaling_factor
54
+ self.dim = dim
55
+ self.max_position_embeddings = max_position_embeddings
56
+ self.base = base
57
+ inv_freq = 1.0 / (
58
+ self.base
59
+ ** (
60
+ torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device)
61
+ / self.dim
62
+ )
63
+ )
64
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
65
+ # For BC we register cos and sin cached
66
+ self.max_seq_len_cached = max_position_embeddings
67
+
68
+ @torch.no_grad()
69
+ def forward(self, x, position_ids):
70
+ # x: [bs, num_attention_heads, seq_len, head_size]
71
+ inv_freq_expanded = (
72
+ self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
73
+ )
74
+ position_ids_expanded = position_ids[:, None, :].float()
75
+ # Force float32 since bfloat16 loses precision on long contexts
76
+ # See https://github.com/huggingface/transformers/pull/29285
77
+ device_type = x.device.type
78
+ device_type = (
79
+ device_type
80
+ if isinstance(device_type, str) and device_type != "mps"
81
+ else "cpu"
82
+ )
83
+ with torch.autocast(device_type=device_type, enabled=False):
84
+ freqs = (
85
+ inv_freq_expanded.float() @ position_ids_expanded.float()
86
+ ).transpose(1, 2)
87
+ emb = freqs.repeat_interleave(2, dim=-1, output_size=self.dim)
88
+ cos = emb.cos()
89
+ sin = emb.sin()
90
+
91
+ return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
92
+
93
+
94
+ class PhariaLinearScalingRotaryEmbedding(PhariaRotaryEmbedding):
95
+ """PhariaRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
96
+
97
+ def forward(self, x, position_ids):
98
+ # difference to the original RoPE: a scaling factor is aplied to the position ids
99
+ position_ids = position_ids.float() / self.scaling_factor
100
+ cos, sin = super().forward(x, position_ids)
101
+ return cos, sin
102
+
103
+
104
+ class PhariaDynamicNTKScalingRotaryEmbedding(PhariaRotaryEmbedding):
105
+ """PhariaRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
106
+
107
+ def forward(self, x, position_ids):
108
+ # difference to the original RoPE: inv_freq is recomputed when the sequence length > original length
109
+ seq_len = torch.max(position_ids) + 1
110
+ if seq_len > self.max_position_embeddings:
111
+ base = self.base * (
112
+ (self.scaling_factor * seq_len / self.max_position_embeddings)
113
+ - (self.scaling_factor - 1)
114
+ ) ** (self.dim / (self.dim - 2))
115
+ inv_freq = 1.0 / (
116
+ base
117
+ ** (
118
+ torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(x.device)
119
+ / self.dim
120
+ )
121
+ )
122
+ self.register_buffer(
123
+ "inv_freq", inv_freq, persistent=False
124
+ ) # TODO joao: this may break with compilation
125
+
126
+ cos, sin = super().forward(x, position_ids)
127
+ return cos, sin
128
+
129
+
130
+ def rotate_half(x):
131
+ """Rotates half the hidden dims of the input (interleaved)."""
132
+ y = torch.empty_like(x)
133
+ y[..., ::2] = -x[..., 1::2]
134
+ y[..., 1::2] = x[..., ::2]
135
+ return y
136
+
137
+
138
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
139
+ """Applies Rotary Position Embedding to the query and key tensors.
140
+
141
+ Args:
142
+ q (`torch.Tensor`): The query tensor.
143
+ k (`torch.Tensor`): The key tensor.
144
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
145
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
146
+ position_ids (`torch.Tensor`, *optional*):
147
+ Deprecated and unused.
148
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
149
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
150
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
151
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
152
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
153
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
154
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
155
+ Returns:
156
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
157
+ """
158
+ cos = cos.unsqueeze(unsqueeze_dim)
159
+ sin = sin.unsqueeze(unsqueeze_dim)
160
+ q_embed = (q * cos) + (rotate_half(q) * sin)
161
+ k_embed = (k * cos) + (rotate_half(k) * sin)
162
+
163
+ return q_embed, k_embed
164
+
165
+
166
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
167
+ """
168
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
169
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
170
+ """
171
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
172
+ if n_rep == 1:
173
+ return hidden_states
174
+ hidden_states = hidden_states[:, :, None, :, :].expand(
175
+ batch, num_key_value_heads, n_rep, slen, head_dim
176
+ )
177
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
178
+
179
+
180
+ class LlamaAttention(nn.Module):
181
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
182
+
183
+ def __init__(self, config: PhariaConfig, layer_idx: Optional[int] = None):
184
+ super().__init__()
185
+ self.config = config
186
+ self.layer_idx = layer_idx
187
+ # if layer_idx is None:
188
+ # logger.warning_once(
189
+ # f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
190
+ # "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
191
+ # "when creating this class."
192
+ # )
193
+
194
+ self.attention_dropout = config.attention_dropout
195
+ self.hidden_size = config.hidden_size
196
+ self.num_heads = config.num_attention_heads
197
+ self.head_dim = self.hidden_size // self.num_heads
198
+ self.num_key_value_heads = config.num_key_value_heads
199
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
200
+ self.max_position_embeddings = config.max_position_embeddings
201
+ self.rope_theta = config.rope_theta
202
+ self.is_causal = True
203
+
204
+ if (self.head_dim * self.num_heads) != self.hidden_size:
205
+ raise ValueError(
206
+ f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
207
+ f" and `num_heads`: {self.num_heads})."
208
+ )
209
+
210
+ self.q_proj = nn.Linear(
211
+ self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias
212
+ )
213
+ self.k_proj = nn.Linear(
214
+ self.hidden_size,
215
+ self.num_key_value_heads * self.head_dim,
216
+ bias=config.attention_bias,
217
+ )
218
+ self.v_proj = nn.Linear(
219
+ self.hidden_size,
220
+ self.num_key_value_heads * self.head_dim,
221
+ bias=config.attention_bias,
222
+ )
223
+ self.o_proj = nn.Linear(
224
+ self.hidden_size, self.hidden_size, bias=config.attention_bias
225
+ )
226
+ self._init_rope()
227
+
228
+ def _init_rope(self):
229
+ if self.config.rope_scaling is None:
230
+ self.rotary_emb = PhariaRotaryEmbedding(
231
+ self.head_dim,
232
+ max_position_embeddings=self.max_position_embeddings,
233
+ base=self.rope_theta,
234
+ )
235
+ else:
236
+ scaling_type = self.config.rope_scaling["type"]
237
+ scaling_factor = self.config.rope_scaling["factor"]
238
+ if scaling_type == "linear":
239
+ self.rotary_emb = PhariaLinearScalingRotaryEmbedding(
240
+ self.head_dim,
241
+ max_position_embeddings=self.max_position_embeddings,
242
+ scaling_factor=scaling_factor,
243
+ base=self.rope_theta,
244
+ )
245
+ elif scaling_type == "dynamic":
246
+ self.rotary_emb = PhariaDynamicNTKScalingRotaryEmbedding(
247
+ self.head_dim,
248
+ max_position_embeddings=self.max_position_embeddings,
249
+ scaling_factor=scaling_factor,
250
+ base=self.rope_theta,
251
+ )
252
+ else:
253
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
254
+
255
+ def forward(
256
+ self,
257
+ hidden_states: torch.Tensor,
258
+ attention_mask: Optional[torch.Tensor] = None,
259
+ position_ids: Optional[torch.LongTensor] = None,
260
+ past_key_value: Optional[Cache] = None,
261
+ output_attentions: bool = False,
262
+ use_cache: bool = False,
263
+ cache_position: Optional[torch.LongTensor] = None,
264
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
265
+ bsz, q_len, _ = hidden_states.size()
266
+
267
+ query_states = self.q_proj(hidden_states)
268
+ key_states = self.k_proj(hidden_states)
269
+ value_states = self.v_proj(hidden_states)
270
+
271
+ query_states = query_states.view(
272
+ bsz, q_len, self.num_heads, self.head_dim
273
+ ).transpose(1, 2)
274
+ key_states = key_states.view(
275
+ bsz, q_len, self.num_key_value_heads, self.head_dim
276
+ ).transpose(1, 2)
277
+ value_states = value_states.view(
278
+ bsz, q_len, self.num_key_value_heads, self.head_dim
279
+ ).transpose(1, 2)
280
+
281
+ cos, sin = self.rotary_emb(value_states, position_ids)
282
+ query_states, key_states = apply_rotary_pos_emb(
283
+ query_states, key_states, cos, sin
284
+ )
285
+
286
+ if past_key_value is not None:
287
+ # cache_position needed for the static cache
288
+ cache_kwargs = {"cache_position": cache_position}
289
+ key_states, value_states = past_key_value.update(
290
+ key_states, value_states, self.layer_idx, cache_kwargs
291
+ )
292
+
293
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
294
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
295
+
296
+ attn_weights = torch.matmul(
297
+ query_states, key_states.transpose(2, 3)
298
+ ) / math.sqrt(self.head_dim)
299
+
300
+ if attention_mask is not None: # no matter the length, we just slice it
301
+ causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
302
+ attn_weights = attn_weights + causal_mask
303
+
304
+ # upcast attention to fp32
305
+ attn_weights = nn.functional.softmax(
306
+ attn_weights, dim=-1, dtype=torch.float32
307
+ ).to(query_states.dtype)
308
+ attn_weights = nn.functional.dropout(
309
+ attn_weights, p=self.attention_dropout, training=self.training
310
+ )
311
+ attn_output = torch.matmul(attn_weights, value_states)
312
+
313
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
314
+ raise ValueError(
315
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
316
+ f" {attn_output.size()}"
317
+ )
318
+
319
+ attn_output: Optional[torch.Tensor] = attn_output.transpose(1, 2).contiguous()
320
+
321
+ attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
322
+
323
+ attn_output = self.o_proj(attn_output)
324
+
325
+ if not output_attentions:
326
+ attn_weights = None
327
+
328
+ return attn_output, attn_weights, past_key_value
329
+
330
+
331
+ class PhariaMLP(nn.Module):
332
+ def __init__(self, config, layer_idx: int):
333
+ super().__init__()
334
+ self.layer_idx = layer_idx
335
+ self.config = config
336
+ self.hidden_size = config.hidden_size
337
+ self.intermediate_size = config.intermediate_size
338
+ self.up_proj = nn.Linear(
339
+ self.hidden_size, self.intermediate_size, bias=config.mlp_bias
340
+ )
341
+ self.down_proj = nn.Linear(
342
+ self.intermediate_size, self.hidden_size, bias=config.mlp_bias
343
+ )
344
+ self.act_fn = ACT2FN[config.hidden_act]
345
+
346
+ def forward(self, x):
347
+ o = self.down_proj(self.act_fn(self.up_proj(x)))
348
+ return o
349
+
350
+
351
+ class PhariaDecoderLayer(nn.Module):
352
+ def __init__(self, config: PhariaConfig, layer_idx: int):
353
+ super().__init__()
354
+ self.hidden_size = config.hidden_size
355
+ self.self_attn = LlamaAttention(config=config, layer_idx=layer_idx)
356
+ self.mlp = PhariaMLP(config, layer_idx=layer_idx)
357
+ self.input_layernorm = nn.LayerNorm(config.hidden_size)
358
+ self.post_attention_layernorm = nn.LayerNorm(config.hidden_size)
359
+ self.layer_idx = layer_idx
360
+
361
+ def forward(
362
+ self,
363
+ hidden_states: torch.Tensor,
364
+ attention_mask: Optional[torch.Tensor] = None,
365
+ position_ids: Optional[torch.LongTensor] = None,
366
+ past_key_value: Optional[Cache] = None,
367
+ output_attentions: Optional[bool] = False,
368
+ use_cache: Optional[bool] = False,
369
+ cache_position: Optional[torch.LongTensor] = None,
370
+ ) -> Tuple[
371
+ torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
372
+ ]:
373
+ residual = hidden_states
374
+
375
+ hidden_states = self.input_layernorm(hidden_states)
376
+
377
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
378
+ hidden_states=hidden_states,
379
+ attention_mask=attention_mask,
380
+ position_ids=position_ids,
381
+ past_key_value=past_key_value,
382
+ output_attentions=output_attentions,
383
+ use_cache=use_cache,
384
+ cache_position=cache_position,
385
+ )
386
+ hidden_states = residual + hidden_states
387
+
388
+ residual = hidden_states
389
+ hidden_states = self.post_attention_layernorm(hidden_states)
390
+
391
+ if self.layer_idx == -1:
392
+ print("Layer 0 huggingface")
393
+ print(hidden_states)
394
+ print(hidden_states.shape)
395
+
396
+ hidden_states = self.mlp(hidden_states)
397
+ hidden_states = residual + hidden_states
398
+
399
+ outputs = (hidden_states,)
400
+
401
+ if output_attentions:
402
+ outputs += (self_attn_weights,)
403
+
404
+ if use_cache:
405
+ outputs += (present_key_value,)
406
+
407
+ return outputs
408
+
409
+
410
+ class PhariaPreTrainedModel(nn.Module):
411
+ config_class = PhariaConfig
412
+ base_model_prefix = "model"
413
+ supports_gradient_checkpointing = True
414
+ _no_split_modules = ["PhariaDecoderLayer"]
415
+ _skip_keys_device_placement = ["past_key_values"]
416
+ _supports_flash_attn_2 = False
417
+ _supports_sdpa = False
418
+ _supports_cache_class = True
419
+ _supports_static_cache = True
420
+
421
+ def _init_weights(self, module):
422
+ std = self.config.initializer_range
423
+ if isinstance(module, nn.Linear):
424
+ module.weight.data.normal_(mean=0.0, std=std)
425
+ if module.bias is not None:
426
+ module.bias.data.zero_()
427
+ elif isinstance(module, nn.Embedding):
428
+ module.weight.data.normal_(mean=0.0, std=std)
429
+ if module.padding_idx is not None:
430
+ module.weight.data[module.padding_idx].zero_()
431
+
432
+
433
+ class PhariaModel(nn.Module):
434
+ config_class = PhariaConfig
435
+
436
+ def __init__(self, config: PhariaConfig):
437
+ #super().__init__(config)
438
+ super(PhariaModel, self).__init__()
439
+ self.config = config
440
+ self.padding_idx = config.pad_token_id
441
+ self.vocab_size = config.vocab_size
442
+
443
+ print(config.vocab_size, config.hidden_size, self.padding_idx)
444
+
445
+ self.embed_tokens = nn.Embedding(
446
+ config.vocab_size, config.hidden_size, self.padding_idx
447
+ )
448
+
449
+ self.layers = nn.ModuleList(
450
+ [
451
+ PhariaDecoderLayer(config, layer_idx)
452
+ for layer_idx in range(config.num_hidden_layers)
453
+ ]
454
+ )
455
+ self.norm = nn.LayerNorm(config.hidden_size)
456
+ self.head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
457
+
458
+ def forward(
459
+ self,
460
+ input_ids: torch.LongTensor = None,
461
+ attention_mask: Optional[torch.Tensor] = None,
462
+ position_ids: Optional[torch.LongTensor] = None,
463
+ past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
464
+ inputs_embeds: Optional[torch.FloatTensor] = None,
465
+ use_cache: Optional[bool] = None,
466
+ output_attentions: Optional[bool] = False,
467
+ output_hidden_states: Optional[bool] = False,
468
+ return_dict: Optional[bool] = False,
469
+ cache_position: Optional[torch.LongTensor] = None,
470
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
471
+ output_attentions = (
472
+ output_attentions
473
+ if output_attentions is not None
474
+ else self.config.output_attentions
475
+ )
476
+ output_hidden_states = (
477
+ output_hidden_states
478
+ if output_hidden_states is not None
479
+ else self.config.output_hidden_states
480
+ )
481
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
482
+ return_dict = (
483
+ return_dict if return_dict is not None else self.config.use_return_dict
484
+ )
485
+
486
+ if (input_ids is None) ^ (inputs_embeds is not None):
487
+ raise ValueError(
488
+ "You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
489
+ )
490
+
491
+ # if self.gradient_checkpointing and self.training and use_cache:
492
+ # # logger.warning_once(
493
+ # # "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
494
+ # # )
495
+ # use_cache = False
496
+
497
+ if inputs_embeds is None:
498
+ inputs_embeds = self.embed_tokens(input_ids)
499
+
500
+ return_legacy_cache = False
501
+ if use_cache and not isinstance(
502
+ past_key_values, Cache
503
+ ): # kept for BC (non `Cache` `past_key_values` inputs)
504
+ return_legacy_cache = True
505
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
506
+
507
+ if cache_position is None:
508
+ past_seen_tokens = (
509
+ past_key_values.get_seq_length() if past_key_values is not None else 0
510
+ )
511
+ cache_position = torch.arange(
512
+ past_seen_tokens,
513
+ past_seen_tokens + inputs_embeds.shape[1],
514
+ device=inputs_embeds.device,
515
+ )
516
+ if position_ids is None:
517
+ position_ids = cache_position.unsqueeze(0)
518
+
519
+ causal_mask = self._update_causal_mask(
520
+ attention_mask,
521
+ inputs_embeds,
522
+ cache_position,
523
+ past_key_values,
524
+ output_attentions,
525
+ )
526
+
527
+ # embed positions
528
+ hidden_states = inputs_embeds
529
+
530
+ # decoder layers
531
+ all_hidden_states = () if output_hidden_states else None
532
+ all_self_attns = () if output_attentions else None
533
+ next_decoder_cache = None
534
+
535
+ for decoder_layer in self.layers:
536
+ if output_hidden_states:
537
+ all_hidden_states += (hidden_states,)
538
+
539
+ # if self.gradient_checkpointing and self.training:
540
+ # layer_outputs = self._gradient_checkpointing_func(
541
+ # decoder_layer.__call__,
542
+ # hidden_states,
543
+ # causal_mask,
544
+ # position_ids,
545
+ # past_key_values,
546
+ # output_attentions,
547
+ # use_cache,
548
+ # cache_position,
549
+ # )
550
+ # else:
551
+ layer_outputs = decoder_layer(
552
+ hidden_states,
553
+ attention_mask=causal_mask,
554
+ position_ids=position_ids,
555
+ past_key_value=past_key_values,
556
+ output_attentions=output_attentions,
557
+ use_cache=use_cache,
558
+ cache_position=cache_position,
559
+ )
560
+
561
+ hidden_states = layer_outputs[0]
562
+
563
+ if use_cache:
564
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
565
+
566
+ if output_attentions:
567
+ all_self_attns += (layer_outputs[1],)
568
+
569
+ hidden_states = self.norm(hidden_states)
570
+
571
+ # add hidden states from the last decoder layer
572
+ if output_hidden_states:
573
+ all_hidden_states += (hidden_states,)
574
+
575
+ next_cache = next_decoder_cache if use_cache else None
576
+ if return_legacy_cache:
577
+ next_cache = next_cache.to_legacy_cache()
578
+
579
+ hidden_states = self.head(hidden_states)
580
+ return hidden_states
581
+
582
+ if not return_dict:
583
+ return tuple(
584
+ v
585
+ for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
586
+ if v is not None
587
+ )
588
+ #return BaseModelOutputWithPast(
589
+ # last_hidden_state=hidden_states,
590
+ # past_key_values=next_cache,
591
+ # hidden_states=all_hidden_states,
592
+ # attentions=all_self_attns,
593
+ #)
594
+
595
+ def _update_causal_mask(
596
+ self,
597
+ attention_mask: torch.Tensor,
598
+ input_tensor: torch.Tensor,
599
+ cache_position: torch.Tensor,
600
+ past_key_values: Cache,
601
+ output_attentions: bool,
602
+ ):
603
+ # TODO: As of torch==2.2.0, the `attention_mask` passed to the model in `generate` is 2D and of dynamic length even when the static
604
+ # KV cache is used. This is an issue for torch.compile which then recaptures cudagraphs at each decode steps due to the dynamic shapes.
605
+ # (`recording cudagraph tree for symint key 13`, etc.), which is VERY slow. A workaround is `@torch.compiler.disable`, but this prevents using
606
+ # `fullgraph=True`. See more context in https://github.com/huggingface/transformers/pull/29114
607
+
608
+ # Removed by Tristan.
609
+ #if self.config._attn_implementation == "flash_attention_2":
610
+ # if attention_mask is not None and 0.0 in attention_mask:
611
+ # return attention_mask
612
+ # return None
613
+
614
+ # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in
615
+ # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail
616
+ # to infer the attention mask.
617
+ past_seen_tokens = (
618
+ past_key_values.get_seq_length() if past_key_values is not None else 0
619
+ )
620
+ using_static_cache = isinstance(past_key_values, StaticCache)
621
+
622
+ # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward
623
+ #if (
624
+ # self.config._attn_implementation == "sdpa"
625
+ # and not using_static_cache
626
+ # and not output_attentions
627
+ #):
628
+ # if AttentionMaskConverter._ignore_causal_mask_sdpa(
629
+ # attention_mask,
630
+ # inputs_embeds=input_tensor,
631
+ # past_key_values_length=past_seen_tokens,
632
+ # is_training=self.training,
633
+ # ):
634
+ # return None
635
+
636
+ dtype, device = input_tensor.dtype, input_tensor.device
637
+ min_dtype = torch.finfo(dtype).min
638
+ sequence_length = input_tensor.shape[1]
639
+ if using_static_cache:
640
+ target_length = past_key_values.get_max_length()
641
+ else:
642
+ target_length = (
643
+ attention_mask.shape[-1]
644
+ if isinstance(attention_mask, torch.Tensor)
645
+ else past_seen_tokens + sequence_length + 1
646
+ )
647
+
648
+ if attention_mask is not None and attention_mask.dim() == 4:
649
+ # in this case we assume that the mask comes already in inverted form and requires no inversion or slicing
650
+ if attention_mask.max() != 0:
651
+ raise ValueError(
652
+ "Custom 4D attention mask should be passed in inverted form with max==0`"
653
+ )
654
+ causal_mask = attention_mask
655
+ else:
656
+ causal_mask = torch.full(
657
+ (sequence_length, target_length),
658
+ fill_value=min_dtype,
659
+ dtype=dtype,
660
+ device=device,
661
+ )
662
+ if sequence_length != 1:
663
+ causal_mask = torch.triu(causal_mask, diagonal=1)
664
+ causal_mask *= torch.arange(
665
+ target_length, device=device
666
+ ) > cache_position.reshape(-1, 1)
667
+ causal_mask = causal_mask[None, None, :, :].expand(
668
+ input_tensor.shape[0], 1, -1, -1
669
+ )
670
+ if attention_mask is not None:
671
+ causal_mask = (
672
+ causal_mask.clone()
673
+ ) # copy to contiguous memory for in-place edit
674
+ mask_length = attention_mask.shape[-1]
675
+ padding_mask = (
676
+ causal_mask[:, :, :, :mask_length]
677
+ + attention_mask[:, None, None, :]
678
+ )
679
+ padding_mask = padding_mask == 0
680
+ causal_mask[:, :, :, :mask_length] = causal_mask[
681
+ :, :, :, :mask_length
682
+ ].masked_fill(padding_mask, min_dtype)
683
+ #if (
684
+ # self.config._attn_implementation == "sdpa"
685
+ # and attention_mask is not None
686
+ # and attention_mask.device.type == "cuda"
687
+ # and not output_attentions
688
+ #):
689
+ # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when
690
+ # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
691
+ # Details: https://github.com/pytorch/pytorch/issues/110213
692
+ # causal_mask = AttentionMaskConverter._unmask_unattended(
693
+ # causal_mask, min_dtype
694
+ # )
695
+
696
+ return causal_mask