Spaces:
Sleeping
Sleeping
File size: 11,546 Bytes
87ae0b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
import copy
import note_seq
from PIL import Image
import tempfile
import os
import colorama
from omegaconf import DictConfig, OmegaConf
import torch
from typing import List, Tuple, Dict
from dacite import from_dict
from collections.abc import MutableMapping
import sys
# NOTE: Imported from helibrunna.
def display_logo():
"""
Display the logo by printing it line by line with a cyberpunk color scheme.
Raises:
FileNotFoundError: If the logo file is missing.
"""
# Get the path of this script and use it to find the logo.
script_path = os.path.dirname(os.path.realpath(__file__))
search_path = os.path.dirname(script_path)
# Load the logo.
logo_path = os.path.join(search_path, "assets", "asciilogo.txt")
if not os.path.exists(logo_path):
raise FileNotFoundError("The logo file is missing.")
with open(logo_path, "r") as f:
logo = f.read()
# Print the logo line by line. Use colorama to colorize the output. Use a cyberpunk color scheme.
for line_index, line in enumerate(logo.split("\n")):
color = colorama.Fore.GREEN
style = colorama.Style.BRIGHT if line_index % 2 == 0 else colorama.Style.NORMAL
print(color + style + line)
print(colorama.Style.RESET_ALL)
# NOTE: Imported from helibrunna.
def model_from_config(model_config: DictConfig, device:str) -> torch.nn.Module:
"""
Create a model based on the provided model configuration.
Args:
model_config (DictConfig): The configuration for the model.
Returns:
The created model.
Raises:
ValueError: If the model type is unknown.
"""
# Get the model type from the configuration.
model_type = model_config.get("type", "xLSTMLMModel")
# Create the xLSTMLMModel.
if model_type == "xLSTMLMModel":
print("Creating xLSTMLMModel...")
from xlstm.xlstm_lm_model import xLSTMLMModel, xLSTMLMModelConfig
# If there is no GPU, use the vanilla backend.
if not torch.cuda.is_available():
#model_config.backend = "vanilla"
model_config.slstm_block.slstm.backend = "vanilla"
model_config.mlstm_block.mlstm.backend = "vanilla"
model_config_object = from_dict(xLSTMLMModelConfig, OmegaConf.to_container(model_config))
# Create the model.
model = xLSTMLMModel(model_config_object)
model.reset_parameters()
# Create the GPT2LMModel.
elif model_type == "gpt2":
print("Creating GPT2LMModel...")
from .models.gpttwo import GPT2LMModel, GPT2LMModelConfig
model_config_object = from_dict(GPT2LMModelConfig, OmegaConf.to_container(model_config))
model = GPT2LMModel(model_config_object)
# Create the MambaLM.
elif model_type == "mamba":
print("Creating Mamba LM...")
from mambapy.lm import LM, MambaConfig
model_config_object = from_dict(MambaConfig, OmegaConf.to_container(model_config))
model = LM(model_config_object, model_config.vocab_size)
# Create the Transformer.
elif model_type == "transformer":
from .models.transformer import TransformerConfig, Transformer
model_config_object = from_dict(TransformerConfig, OmegaConf.to_container(model_config))
model = Transformer(model_config_object)
# Create a Pharia instance.
elif model_type == "pharia":
from .models.pharia import PhariaConfig, PhariaModel
model_config_object = from_dict(PhariaConfig, OmegaConf.to_container(model_config))
model = PhariaModel(model_config_object)
# Create a TransformerXL instance.
else:
raise ValueError(f"Unknown model type: {model_type}")
# Move the model to the device.
model.to(device)
return model
def convert_tokens_to_songdata(tokens):
if isinstance(tokens, str):
tokens = tokens.split()
song_data = {}
song_data["tracks"] = []
current_track_index = 0
current_timestep = 0
for token in tokens:
if token == "GARLAND_START":
pass
elif token == "BAR_START":
if current_track_index == len(song_data["tracks"]):
song_data["tracks"] += [{"bars": [], "instrument": "0"}]
bar_data = {"notes": []}
song_data["tracks"][current_track_index]["bars"] += [bar_data]
current_timestep = 0
elif token.startswith("INST="):
instrument = token.split("=")[1]
song_data["tracks"][current_track_index]["instrument"] = instrument
elif token.startswith("DENSITY="):
pass
elif token.startswith("NOTE_ON="):
note_pitch = int(token.split("=")[1])
note_data = {
"note": note_pitch,
"start": current_timestep,
"end": current_timestep,
"veloctiy": 80
}
song_data["tracks"][current_track_index]["bars"][-1]["notes"] += [note_data]
pass
elif token.startswith("TIME_DELTA="):
current_timestep += int(token.split("=")[1])
elif token.startswith("NOTE_OFF="):
note_pitch = int(token.split("=")[1])
for note_data in song_data["tracks"][current_track_index]["bars"][-1]["notes"]:
if note_data["note"] == note_pitch and note_data["start"] == note_data["end"]:
note_data["end"] = current_timestep
break
pass
elif token == "BAR_END":
current_track_index += 1
elif token == "NEXT":
current_track_index = 0
elif token == "GARLAND_END":
pass
elif token == "[PAD]":
pass
elif token == "[EOS]":
pass
else:
raise Exception(f"Unknown token: {token}")
assert isinstance(song_data, dict)
return song_data
def convert_songdata_to_notesequence(song_data:dict, quantize_steps_per_quarter=8, remove_disabled_tracks=True):
assert isinstance(song_data, dict), f"Invalid song data type: {type(song_data)}"
# Clone the song data.
song_data = copy.deepcopy(song_data)
# Sort the tracks by instrument.
assert "tracks" in song_data, f"Invalid song data: {song_data.keys()}"
tracks = sorted(song_data["tracks"], key=lambda t: t["instrument"])
song_data["tracks"] = tracks
# Remove tracks that are not enabled.
if remove_disabled_tracks:
song_data["tracks"] = [t for t in song_data["tracks"] if t.get("enabled", True)]
# Create an empy note sequence.
note_sequence = note_seq.protobuf.music_pb2.NoteSequence()
# Add the tempo.
bpm = song_data["bpm"] if "bpm" in song_data else 120
note_sequence.tempos.add().qpm = bpm
# Compute some lengths.
step_length_seconds = 60.0 / bpm / quantize_steps_per_quarter
bar_length_seconds = 4 * step_length_seconds * quantize_steps_per_quarter
# Get the instruments.
instruments = list(set([t["instrument"] for t in song_data["tracks"]]))
# Add the tracks.
for track_index, track_data in enumerate(song_data["tracks"]):
instrument = track_data["instrument"]
for bar_index, bar_data in enumerate(track_data["bars"]):
bar_start_time = bar_index * bar_length_seconds
for note_data in bar_data["notes"]:
assert "note" in note_data
assert "start" in note_data
assert "end" in note_data
note = note_sequence.notes.add()
#note.instrument = instrument TODO
note.pitch = note_data["note"]
note.start_time = note_data["start"] * step_length_seconds + bar_start_time
note.end_time = note_data["end"] * step_length_seconds + bar_start_time
if "velocity" in note_data:
note.velocity = note_data["velocity"]
else:
note.velocity = 80
note.instrument = track_index
if instrument == "drums":
note.is_drum = True
else:
note.is_drum = False
note.program = int(instrument)
return note_sequence
def convert_songdata_to_pianoroll(song_data):
# The bars are 4/4 and the quantization is 8 steps per quarter, aka 32 steps per bar.
# We will render a grid. The height is 64 pixels. The width is 32 pixels per bar
# Create a new image.
lengths = [len(track["bars"]) for track in song_data["tracks"]]
if lengths == []:
return None
assert len(set(lengths)) == 1, f"Unequal number of bars: {lengths}"
num_bars = lengths[0]
# Get the note extremes.
min_note = 128
max_note = 0
for track_data in song_data["tracks"]:
for bar_data in track_data["bars"]:
for note_data in bar_data["notes"]:
min_note = min(min_note, note_data["note"])
max_note = max(max_note, note_data["note"])
# The width depends on the bars.
width = 32 * num_bars
# The width depends on the notes.
height = 1 + max_note - min_note
# Create the image.
image = Image.new("RGB", (width, height), (14, 17, 23))
# Define some colors.
base_color = (255, 75, 75)
adjustments = [1.2, 1.0, 0.8, 0.6]
colors = []
for adjustment in adjustments:
import colorsys
rgb = base_color
rgb = [float(c) / 255.0 for c in rgb]
hsv = colorsys.rgb_to_hsv(*rgb)
# Rotate the hue.
offset = (adjustment - 1.0) * 0.1
hsv = (hsv[0] + offset, hsv[1], hsv[2])
rgb = colorsys.hsv_to_rgb(*hsv)
rgb = tuple([int(255.0 * c) for c in rgb])
colors += [rgb]
print("")
for color in colors:
print(color)
# Draw the grid.
for track_index, track_data in enumerate(song_data["tracks"]):
color = colors[track_index % len(colors)]
for bar_index, bar_data in enumerate(track_data["bars"]):
x = bar_index * 32
for note_data in bar_data["notes"]:
y = max_note - note_data["note"]
assert y >= 0 and y < height, f"Invalid y: {y}, note {note_data['note']} min_note: {min_note}, max_note: {max_note}, difference: {max_note - min_note}, height: {height}"
for i in range(note_data["start"], note_data["end"]):
image.putpixel((x + i, y), color)
# Resize the image. Use nearest neighbor for pixel art.
factor = 4
image = image.resize((width * factor, height * factor), Image.NEAREST)
return image
def convert_notesequence_to_wave(note_sequence):
if len(note_sequence.notes) == 0:
return None
try:
synthesizer = note_seq.fluidsynth
wave = synthesizer(note_sequence, sample_rate=44100)
return wave
except Exception as e:
synthesizer = note_seq.synthesize
wave = synthesizer(note_sequence)
return wave
def convert_notesequence_to_midi(note_sequence, filename="output.mid"):
if len(note_sequence.notes) == 0:
return None
# Returns the file content of the midi file.
with tempfile.NamedTemporaryFile(delete=False) as temp_file:
filename = temp_file.name
note_seq.sequence_proto_to_midi_file(note_sequence, filename)
with open(filename, "rb") as file:
content = file.read()
return content
|