Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
@@ -1,88 +1,44 @@
|
|
1 |
import spaces
|
2 |
-
from transformers import
|
3 |
import torch
|
4 |
import gradio as gr
|
5 |
-
import random
|
6 |
-
from textwrap import wrap
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
13 |
|
14 |
-
|
15 |
-
def multimodal_prompt(user_input, system_prompt="You are an expert medical analyst:"):
|
16 |
-
# Combine user input and system prompt
|
17 |
-
formatted_input = f"<s> [INST] {example_instruction} [/INST] {example_answer}</s> [INST] {system_prompt} [/INST]"
|
18 |
-
|
19 |
-
# Encode the input text
|
20 |
-
encodeds = tokenizer(formatted_input, return_tensors="pt", add_special_tokens=False)
|
21 |
-
model_inputs = encodeds.to(device)
|
22 |
-
|
23 |
-
# Generate a response using the model
|
24 |
-
output = model.generate(
|
25 |
-
**model_inputs,
|
26 |
-
max_length=max_length,
|
27 |
-
use_cache=True,
|
28 |
-
early_stopping=True,
|
29 |
-
bos_token_id=model.config.bos_token_id,
|
30 |
-
eos_token_id=model.config.eos_token_id,
|
31 |
-
pad_token_id=model.config.eos_token_id,
|
32 |
-
temperature=0.1,
|
33 |
-
do_sample=True
|
34 |
-
)
|
35 |
-
|
36 |
-
# Decode the response
|
37 |
-
response_text = tokenizer.decode(output[0], skip_special_tokens=True)
|
38 |
-
|
39 |
-
return response_text
|
40 |
-
|
41 |
-
# Define the device
|
42 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
43 |
|
44 |
-
# Use the base model's ID
|
45 |
model_id = "SuperAGI/SAM"
|
46 |
-
|
47 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
48 |
-
|
49 |
-
# tokenizer.padding_side = 'left'
|
50 |
|
51 |
-
|
52 |
-
|
|
|
|
|
53 |
|
54 |
-
|
|
|
55 |
|
|
|
56 |
|
57 |
class ChatBot:
|
58 |
def __init__(self):
|
59 |
-
# Initialize the ChatBot class with an empty history
|
60 |
self.history = []
|
61 |
|
62 |
-
def predict(self,
|
63 |
-
|
64 |
-
formatted_input
|
65 |
-
|
66 |
-
# Encode the formatted input using the tokenizer
|
67 |
-
user_input_ids = tokenizer.encode(formatted_input, return_tensors="pt")
|
68 |
-
|
69 |
-
# Generate a response using the PEFT model
|
70 |
-
response = model.generate(input_ids=user_input_ids, max_length=512, pad_token_id=tokenizer.eos_token_id)
|
71 |
-
|
72 |
-
# Decode the generated response to text
|
73 |
-
response_text = tokenizer.decode(response[0], skip_special_tokens=True)
|
74 |
-
|
75 |
-
return response_text # Return the generated response
|
76 |
|
77 |
bot = ChatBot()
|
78 |
|
79 |
-
title = "🚀👋🏻Welcome to Tonic's🤖SuperAGI/SAM Chat🚀"
|
80 |
-
description = "SAM is an Agentic-Native LLM that excels at complex reasoning. You can use this Space to test out the current model [Tonic/superagi-sam](https://huggingface.co/Tonic/superagi-sam) or duplicate this Space and use it locally or on 🤗HuggingFace. [Join me on Discord to build together](https://discord.gg/VqTxc76K3u)."
|
81 |
-
examples = [["[Question:] What is the proper treatment for buccal herpes?", "You are a medicine and public health expert, you will receive a question, answer the question, and provide a complete answer"]]
|
82 |
-
|
83 |
-
|
84 |
def main():
|
85 |
with gr.Blocks() as demo:
|
|
|
86 |
gr.Markdown(title)
|
87 |
gr.Markdown(description)
|
88 |
with gr.Row():
|
@@ -104,4 +60,4 @@ def main():
|
|
104 |
demo.launch()
|
105 |
|
106 |
if __name__ == "__main__":
|
107 |
-
main()
|
|
|
1 |
import spaces
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
import torch
|
4 |
import gradio as gr
|
|
|
|
|
5 |
|
6 |
+
title = "# 🚀👋🏻Welcome to Tonic's🤖SuperAGI/SAM🚀"
|
7 |
+
description = """SAM is an Agentic-Native LLM that **excels at complex reasoning**.
|
8 |
+
You can also use [🤖SuperAGI/SAM](https://huggingface.co/SuperAGI/SAM) by cloning this space. 🧬🔬🔍 Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/superagi-sam?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
|
9 |
+
Join us : 🌟TeamTonic🌟 is always making cool demos! Join our active builder's🛠️community 👻 [![Join us on Discord](https://img.shields.io/discord/1109943800132010065?label=Discord&logo=discord&style=flat-square)](https://discord.gg/GWpVpekp) On 🤗Huggingface: [TeamTonic](https://huggingface.co/TeamTonic) & [MultiTransformer](https://huggingface.co/MultiTransformer) On 🌐Github: [Tonic-AI](https://github.com/tonic-ai) & contribute to 🌟 [EasyAGI](https://github.com/tonic-ai/EasyAGI) 🤗Big thanks to Ythe folks at huggingface for the ZeroGPU 🤗
|
10 |
+
To contribute to this space make a PR with a new example or cool new use-case for this one 🤗
|
11 |
+
"""
|
12 |
|
13 |
+
examples = [["[Question:] What is the proper treatment for buccal herpes?", "You are a medicine and public health expert, you will receive a question, answer the question, and provide a complete answer"]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
|
|
15 |
model_id = "SuperAGI/SAM"
|
|
|
16 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
17 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
|
|
|
18 |
|
19 |
+
@spaces.GPU
|
20 |
+
def generate_response(formatted_input):
|
21 |
+
inputs = tokenizer(formatted_input, return_tensors="pt")
|
22 |
+
inputs = {k: v.to("cuda") for k, v in inputs.items()}
|
23 |
|
24 |
+
# Generate a response using the model
|
25 |
+
output = model.generate(**inputs, max_length=512, pad_token_id=tokenizer.eos_token_id)
|
26 |
|
27 |
+
return tokenizer.decode(output[0], skip_special_tokens=True)
|
28 |
|
29 |
class ChatBot:
|
30 |
def __init__(self):
|
|
|
31 |
self.history = []
|
32 |
|
33 |
+
def predict(self, example_instruction, example_answer, user_input, system_prompt):
|
34 |
+
formatted_input = f"<s> [INST] {example_instruction} [/INST] {example_answer}</s> [INST] {system_prompt} {user_input} [/INST]"
|
35 |
+
return generate_response(formatted_input)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
bot = ChatBot()
|
38 |
|
|
|
|
|
|
|
|
|
|
|
39 |
def main():
|
40 |
with gr.Blocks() as demo:
|
41 |
+
|
42 |
gr.Markdown(title)
|
43 |
gr.Markdown(description)
|
44 |
with gr.Row():
|
|
|
60 |
demo.launch()
|
61 |
|
62 |
if __name__ == "__main__":
|
63 |
+
main()
|