import gradio as gr import torch from PIL import Image, ImageDraw from transformers import AutoProcessor from modeling_florence2 import Florence2ForConditionalGeneration import io import matplotlib.pyplot as plt import matplotlib.patches as patches import numpy as np import random device = "cuda" if torch.cuda.is_available() else "cpu" torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32 model = Florence2ForConditionalGeneration.from_pretrained("PleIAs/Florence-PDF", torch_dtype=torch_dtype, trust_remote_code=True).to(device) processor = AutoProcessor.from_pretrained("PleIAs/Florence-PDF", trust_remote_code=True) TASK_PROMPTS = { "Caption": "", "Detailed Caption": "", "More Detailed Caption": "", "Object Detection": "", "Dense Region Caption": "", "OCR": "", "OCR with Region": "", "Region Proposal": "" } IMAGE_TASKS = ["Object Detection", "Dense Region Caption", "Region Proposal", "OCR with Region"] TEXT_TASKS = ["Caption", "Detailed Caption", "More Detailed Caption", "OCR"] colormap = ['blue','orange','green','purple','brown','pink','gray','olive','cyan','red', 'lime','indigo','violet','aqua','magenta','coral','gold','tan','skyblue'] def fig_to_pil(fig): buf = io.BytesIO() fig.savefig(buf, format='png') buf.seek(0) return Image.open(buf) def plot_bbox(image, data): fig, ax = plt.subplots() ax.imshow(image) for bbox, label in zip(data['bboxes'], data['labels']): x1, y1, x2, y2 = bbox rect = patches.Rectangle((x1, y1), x2-x1, y2-y1, linewidth=1, edgecolor='r', facecolor='none') ax.add_patch(rect) plt.text(x1, y1, label, color='white', fontsize=8, bbox=dict(facecolor='red', alpha=0.5)) ax.axis('off') return fig def draw_ocr_bboxes(image, prediction): scale = 1 draw = ImageDraw.Draw(image) bboxes, labels = prediction['quad_boxes'], prediction['labels'] for box, label in zip(bboxes, labels): color = random.choice(colormap) new_box = (np.array(box) * scale).tolist() draw.polygon(new_box, width=3, outline=color) draw.text((new_box[0]+8, new_box[1]+2), "{}".format(label), align="right", fill=color) return image def process_image(image, task): prompt = TASK_PROMPTS[task] inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype) generated_ids = model.generate( **inputs, max_new_tokens=1024, num_beams=3, do_sample=False ) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] parsed_answer = processor.post_process_generation(generated_text, task=prompt, image_size=(image.width, image.height)) return parsed_answer def main_process(image, task): result = process_image(image, task) if task in IMAGE_TASKS: if task == "OCR with Region": output_image = draw_ocr_bboxes(image.copy(), result[TASK_PROMPTS[task]]) else: fig = plot_bbox(image, result[TASK_PROMPTS[task]]) output_image = fig_to_pil(fig) return output_image, gr.update(visible=True), None, gr.update(visible=False) else: return None, gr.update(visible=False), str(result), gr.update(visible=True) def reset_outputs(): return None, gr.update(visible=False), None, gr.update(visible=True) with gr.Blocks(title="Florence-2 Demo") as iface: gr.Markdown("# Florence-2 Demo") gr.Markdown("Upload an image and select a task to process with Florence-2.") with gr.Column(): image_input = gr.Image(type="pil", label="Input Image") task_dropdown = gr.Dropdown(list(TASK_PROMPTS.keys()), label="Task", value="Caption") with gr.Row(): submit_button = gr.Button("Process") reset_button = gr.Button("Reset") output_image = gr.Image(label="Processed Image", visible=False) output_text = gr.Textbox(label="Output", visible=True) def process_and_update(image, task): if image is None: return None, gr.update(visible=False), "Please upload an image first.", gr.update(visible=True) return main_process(image, task) submit_button.click( fn=process_and_update, inputs=[image_input, task_dropdown], outputs=[output_image, output_image, output_text, output_text] ) reset_button.click( fn=reset_outputs, inputs=[], outputs=[output_image, output_image, output_text, output_text] ) task_dropdown.change( fn=lambda task: (gr.update(visible=task in IMAGE_TASKS), gr.update(visible=task in TEXT_TASKS)), inputs=[task_dropdown], outputs=[output_image, output_text] ) iface.launch()